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Abstract—The paper deals with a boundary value problem
of vibrations of a viscoelastic system that are described by
Volterra type partial integro-differential equations. Here we
propose an approach using the Laplace integral transform,
which allows to construct a solution to the integro-differential
equation in the form of a series, the first term of which is the
solution to this equation obtained by the averaging method. For
a specific kernel, the effectiveness of this approach is shown, and
the influence of various parameters of the equations and initial
conditions on the error of the obtained solution is evaluated.
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I. INTRODUCTION

The importance of studying the theory of vibrations of
viscoelastic systems recent years has been outlined in many
works [1,3].

Without correct knowledge of the theory of vibrations of
these systems with rheological properties, the successful
production of such structures will be practically impossible
and unsafe. The study of such problems mathematically
reduces to solving Volterra type partial integro-diffrential
equations with appropriate boundary and initial conditions.

Unfortunately, the construction of solutions to problems of
this class is associated with a number of difficulties due to
nonlinear expressions and integrals of unknown relaxation
functions. The proposed approach allows to construct the
solution to the integro-diffrential equation of vibrations of
viscoelastic systems in the form of a series the first term of
which is a solution obtained by the averaging method [2,4].

For a specific kernel the effectiveness of this approach is
shown, the influence of various parameters of equations and
initial conditions on the error of the obtained solution is
evaluated.

Il. PROBLEM STATEMENT

Let us consider forced lateral vibrations of a viscoelastic
beam whose end are supported by the described equation:
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where w(x,t) is displacement, Q is a load per unit beam
length, M is a mass per unit beam length, B is a reduced
rigdity, ['(t) is a relaxation kernel and we assume that this

kernel is proportional to some positive small parameters. In
this case the following conditions are fulfilled [1]

0<[I(z)dr <<1, I'(t)>0 forany time t (2)
0
We accept initial conditions in the form
W(x,O):zo,M:zg; 0<x</ 3)

where /7 is the length of the beam.
Condition (2) means that for t <0 the system is at

rest.
By the problem condition the boundary conditions will be
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The problem is mathematically reduced to determining the
solutions to the system of equations (1)-(3) in
D =[0,¢]x[0,T].

I11. PROBLEM SOLUTION

Note that by one of the known methods, the dynamic problem
of viscoelasticity can be reduced to the system of integro-
differential equations in time [2,4]. By means of one of these
methods, equation (1) can be led to the system of integro-
differential equations in the form:

d¥,

TJ’MEVH =2 [T(t—1V,(D)dr +5F,(t); (1=12,.)(5)
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where V_(t) are amplitude functions of time, ¢, and F (t)

are amplituds of small external loads, A =% 5 .
Applying the Laplace integral transform to the

equation (4), allowing for appropriate initial conditions and

omitting indices for simplicity of records, we obtain:

— u, +V. F

V(p)= 2 pz0 20_ 2 2 (p)z_
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where p is a Laplace transform operator, V (p) and T'(p)

(6)

are the images of the functions V(t) and I'(t), respectively.

To calculate the original of solutions, we represent
equation (6) in the form of a series:

pu, +V, & [ eAT(p)
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Transform the fraction —; (j) as follows:
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where At) = [T(D)sin(t-7)dr; T, =Tr(r)sin,1zdr;

T, :I’F(r)coslzdr.
0

Due to conditions (2) the value |gﬁzﬂ(p)| will be
small if the time t is large enough. Therefore, in the formula
(8) we can ignore the term |g/12K(p)| valid for rather large

values of time. Allowing for this condition, substituting (8) in

(7) and summing over the series, we find:
\7(p)= _puo +\£0 - F(p)2 |
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<1, we represent the solution (9)

Assuming, ‘E?p)

in the form:

V(p)=
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Here the first sum corresponds to free vibration, the second
sum to the forced vibration of the system, that are denoted by
g(p) and w (p) respectively, i.e.

(10)
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Calculating the originals of each approximation, we
find

V(1) =2[gi(t>+wi<t)]

where the functions g, (t) and w;,(t) are determined as

follows:
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Then, for the first approximation of solutions to the stated
problem we determine

V,(t)=D exp(—% eAlt)sin[A(l— % a))t+6]+

L 1 (13)
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In a similar way, we can determine subsequent
approximations of the solutions.

From equation (13) it is seen that the oscillation
decays exponentially over time.

Conclusions.

1.Using the method of operational calculus, the solution to
the integro-differential equation of vibration is constructed
in the form of a series, the first term of which coincides with
the solution of this equation obtained by the averaging
method



2. It was obtained that the vibration of the system decays
over time according to the exponential law with the

coefficient (- % ).
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