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Abstract—In this paper, we consider a boundary-value 

problem with boundary control for the equation of vibrations of 

the thin-plate. It is known that many practical problems are 

described by the equation of oscillation of a thin plate, but the 

controllability problems with this equation have almost never 

been studied. One of these questions is investigated in the 

present work. After determination the controllability, by 

introducing an auxiliary boundary value problem and using the 

result of the Han-Banach theorem, the controllability of the 

system under consideration is proved. 
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I. INTRODUCTION 

It is known that a number of processes in physics and 
technology are described by fourth-order partial differential 
equations. For example, the equations of vibration of a rod, 
tuning fork, elastic plate, thin plate, etc. are such equations 
[1], [2]. Therefore, studies of optimal control and 
controllability problems in processes described by such 
equations are important tasks [3]. When control functions are 
boundary functions, learning control problems becomes too 
difficult. But we note that the problem of boundary control 
from theoretical and practical points of view is more natural 
compared to problems with distributed controls. 

Note that in the works [4]–[7] some related control 
problems were considered. Namely, in [4] the problem of 
precise controllability of a three-dimensional linear-elastic 
thin plate with control on the boundary and inside the plate is 
considered, in [5] the problem of controlling transverse 
vibrations of a thin plate is considered, control actions are 
applied to the boundary of the plate, which fills a certain 
limited area on plane, and in [6], [7] the problem of boundary 
optimal control for the linear equation of oscillations of a thin 
plate was studied, and the existence and uniqueness theorem 
of optimal control was proved. 

It should be noted that recently the problem of 
controllability of plate oscillations has been intensively 
studied [8]-[13]. 

In the work considered, one controllability problem is 

studied for the vibration equation of a thin plate. 

II. PROBLEM STATEMENT 

Let the controlled process be described by the 

equation of oscillations of a thin plate 
𝜕2𝑢

𝜕𝑡2 + 𝑎2𝛥2𝑢 = 0 в 𝑄 = 𝛺 × (0, 𝑇), 

 𝛺 = (0, 𝑙1) × (0, 𝑙2)                            (1) 

with initial  

𝑢(𝑥1, 𝑥2, 0) = 𝜑0(𝑥1, 𝑥2), 
𝜕𝑢(𝑥1,𝑥2,0)

𝜕𝑡
= 𝜑1(𝑥1, 𝑥2),  

(𝑥1, 𝑥2) ∈ 𝛺                                    (2) 

and boundary conditions 

𝑢(0, 𝑥2, 𝑡) = 𝜐1
0(𝑥2, 𝑡),  𝑢(𝑙1, 𝑥2, 𝑡) = 𝜐2

0(𝑥2, 𝑡), 
𝜕𝑢(0, 𝑥2, 𝑡)

𝜕𝑥1

= 𝜐1
1(𝑥2, 𝑡),  

𝜕𝑢(𝑙1, 𝑥2, 𝑡)

𝜕𝑥1

= 𝜐2
1(𝑥2, 𝑡), 

(𝑥2, 𝑡) ∈ (0, 𝑙2) × (0, 𝑇), 
𝑢(𝑥1, 0, 𝑡) = 𝜐3

0(𝑥1, 𝑡),  𝑢(𝑥1, 𝑙2, 𝑡) = 𝜐4
0(𝑥1, 𝑡),      (3) 

𝜕𝑢(𝑥1, 0, 𝑡)

𝜕𝑥2

=  𝜐3
1(𝑥1, 𝑡),  

𝜕𝑢(𝑥1, 𝑙2, 𝑡)

𝜕𝑥2

= 𝜐4
1(𝑥1, 𝑡), 

(𝑥1, 𝑡) ∈ (0, 𝑙1) × (0, 𝑇),                             
where 𝑎2, 𝑙1, 𝑙2, 𝑇  - are the given positive numbers, 𝛥  -is 

Laplace operator with respect to 𝑥1, 𝑥2, 𝜑0(𝑥1, 𝑥2) ∈ 𝐻2(𝛺), 

𝜑1(𝑥1, 𝑥2) ∈ 𝐿2(𝛺)  - are the given functions, 𝜐1
0(𝑥2, 𝑡) , 

𝜐2
0(𝑥2, 𝑡), 𝜐3

0(𝑥1, 𝑡), 𝜐4
0(𝑥1, 𝑡), 𝜐1

1(𝑥2, 𝑡), 𝜐2
1(𝑥2, 𝑡), 𝜐3

1(𝑥1, 𝑡), 

𝜐4
1(𝑥1, 𝑡) - are the control functions. 

The class of admissible controls is taken to be the space 

𝑈 = {𝜐1
0(𝑥2, 𝑡), 𝜐2

0(𝑥2, 𝑡), 𝜐3
0(𝑥1, 𝑡), 𝜐4

0(𝑥1, 𝑡), 
𝜐1

1(𝑥2, 𝑡), 𝜐2
1(𝑥2, 𝑡), 𝜐3

1(𝑥1, 𝑡),  𝜐4
1(𝑥1, 𝑡),  

𝜐𝑖
0, 𝜐𝑖

1 ∈ 𝐿2( (0, 𝑙2) × (0, 𝑇)), 𝑖 = 1,2, 

𝜐𝑖
0, 𝜐𝑖

1 ∈ 𝐿2((0, 𝑙1) × (0, 𝑇)), 𝑖 = 3,4} 

A weak solution to this problem is determined using 

transposition [3]: there is a unique function 𝑢(𝜐) ∈ 𝐿2(𝑄), 

for which 

∫ 𝑢(𝜐) (
𝜕2𝜑

𝜕𝑡2
+ 𝑎2𝛥2𝜑) 𝑑𝑥1𝑑𝑥2𝑑𝑡

𝑄

= 

= 𝑎2 (∫ ∫ 𝜐1
0(𝑥2, 𝑡)

𝜕𝛥𝜑(0, 𝑥2, 𝑡)

𝜕𝑥1

𝑑𝑥2𝑑𝑡
𝑙2

0

𝑇

0

− ∫ ∫ 𝜐2
0(𝑥2, 𝑡)

𝜕𝛥𝜑(𝑙1, 𝑥2, 𝑡)

𝜕𝑥1

𝑑𝑥2𝑑𝑡
𝑙2

0

𝑇

0

+ 

+ ∫ ∫ 𝜐1
1(𝑥2, 𝑡)𝛥𝜑(0, 𝑥2, 𝑡)𝑑𝑥2𝑑𝑡

𝑙2

0

𝑇

0

− ∫ ∫ 𝜐2
1(𝑥2, 𝑡)𝛥𝜑(𝑙1, 𝑥2, 𝑡)𝑑𝑥2𝑑𝑡

𝑙2

0

𝑇

0

+ 

+ ∫ ∫ 𝜐3
0(𝑥1, 𝑡)

𝜕𝛥𝜑(𝑥1, 0, 𝑡)

𝜕𝑥2

𝑑𝑥1𝑑𝑡
𝑙1

0

𝑇

0

− ∫ ∫ 𝜐4
0(𝑥1, 𝑡)

𝜕𝛥𝜑(𝑥1, 𝑙2, 𝑡)

𝜕𝑥2

𝑑𝑥1𝑑𝑡 +
𝑙1

0

𝑇

0

 

+ ∫ ∫ 𝜐3
1(𝑥1, 𝑡)𝜑(𝑥1, 0, 𝑡)𝑑𝑥1𝑑𝑡

𝑙1

0

𝑇

0
−

∫ ∫ 𝜐4
1(𝑥1, 𝑡)𝛥𝜑(𝑥1, 𝑙2, 𝑡)𝑑𝑥1𝑑𝑡

𝑙2

0

𝑇

0
) , ∀𝜑 ∈ 𝛷, 

where 

𝛷 = {𝜑|𝐷𝑥
𝑝

𝜑 ∈ 𝐿2(𝑄), |𝑝| ≤ 4,
𝜕𝜑

𝜕𝑡
∈ 𝐿2(𝑄),

𝜕2𝜑

𝜕𝑡2
𝐿2(𝑄), 

𝜑(𝑥1, 𝑥2, 𝑇) = 0,
𝜕𝜑(𝑥1, 𝑥2, 𝑇)

𝜕𝑡
= 0, 𝜑(0, 𝑥2, 𝑡) = 0,  



𝜑(𝑙1, 𝑥2, 𝑡) = 0, 𝜑(𝑥1, 0, 𝑡) = 0, 𝜑(𝑥1, 𝑙2, 𝑡) = 0, 
𝜕𝜑(0, 𝑥2, 𝑡)

𝜕𝑥1

= 0,
𝜕𝜑(𝑙1, 𝑥2, 𝑡)

𝜕𝑥1

= 0,
𝜕𝜑(𝑥1, 0, 𝑡)

𝜕𝑥2

=  0,  

 
𝜕𝜑(𝑥1,𝑙2,𝑡)

𝜕𝑥2
= 0, (𝑥1, 𝑥2) ∈ 𝛺}. 

Definition. A system whose state is defined as a solution 

to problem (1)-(3) is called controllable if the observation 

(𝑢(𝑥1, 𝑥2, 𝑇),
𝜕𝑢(𝑥1, 𝑥2, 𝑇)

𝜕𝑡
) 

sweeps the space 𝐿2(𝛺) × 𝐻−2(𝛺), when the control 

𝜐 = (𝜐1
0(𝑥2, 𝑡), 𝜐2

0(𝑥2, 𝑡), 𝜐3
0(𝑥1, 𝑡), 𝜐4

0(𝑥1, 𝑡), 𝜐1
1(𝑥2, 𝑡), 

𝜐2
1(𝑥2, 𝑡), 𝜐3

1(𝑥1, 𝑡), 𝜐4
1(𝑥1, 𝑡)) 

runs through the space 𝑈 , where 𝐻−2(𝛺)  is the conjugate 

space to the space 𝐻0
2(𝛺), and 

𝐻0
2(𝛺) = {𝜒(𝑥1, 𝑥2)|𝜒 ∈ 𝐻2(𝛺), 𝜒|Г = 0,

𝜕𝜒

𝜕𝜈
|
Г

= 0}, 

Г - is the outer normal to the boundary of Г. 

III. MAIN RESULTS 

In this problem, the following theorem is proved: 

Theorem. Under the above conditions imposed on these 

problems (1)-(3), this system is controllable 

Proof. Let the vector (𝜓0(𝑥1, 𝑥2), 𝜓1(𝑥1, 𝑥2))  be 

orthogonal to the image 𝑈 under the mapping 

𝜐 → (𝑢(𝑥1, 𝑥2, 𝑇),
𝜕𝑢(𝑥1, 𝑥2, 𝑇)

𝜕𝑡
) 

i.e. 

∫ 𝑢(𝑥1, 𝑥2, 𝑇)𝜓0(𝑥1, 𝑥2)𝑑𝑥1𝑑𝑥2
𝛺

+ 

∫
𝜕𝑢(𝑥1,𝑥2,𝑇)

𝜕𝑡
𝜓1(𝑥1, 𝑥2)𝑑𝑥1𝑑𝑥2𝛺

= 0,               (4) 

where 𝜓0(𝑥1, 𝑥2) ∈ 𝐻0
2(𝛺), 𝜓1(𝑥1, 𝑥2) ∈ 𝐿2(𝛺). 

We want to find out whether it will follow from this that 

𝜓0(𝑥1, 𝑥2) ≡ 0, 𝜓1(𝑥1, 𝑥2) ≡ 0 [14].  

Let us assume that the function 𝜉(𝑥1, 𝑥2, 𝑡) is a solution to 

the following auxiliary problem: 
𝜕2𝜉

𝜕𝑡2 + 𝑎2𝛥2𝜉 = 0, 𝑄 = 𝛺 × (0, 𝑇), 

 𝛺 = (0, 𝑙1) × (0, 𝑙2),                           (5) 

𝜉(𝑥1, 𝑥2, 𝑇) = −𝜓1(𝑥1, 𝑥2), 
𝜕𝜉(𝑥1,𝑥2,𝑇)

𝜕𝑡
= 𝜓0(𝑥1, 𝑥2), 

(𝑥1, 𝑥2) ∈ 𝛺,                               (6) 

𝜉(0, 𝑥2, 𝑡) = 0, 𝜉(𝑙1, 𝑥2, 𝑡) = 0,
𝜕𝜉(0,𝑥2,𝑡)

𝜕𝑥1
= 0,

𝜕𝜉(𝑙1,𝑥2,𝑡)

𝜕𝑥1
= 0  

(𝑥2, 𝑡) ∈ (0, 𝑙2) × (0, 𝑇),                       (7)                    

𝜉(𝑥1, 0, 𝑡) = 0, 𝜉(𝑥1, 𝑙2, 𝑡) = 0,
𝜕𝜉(𝑥1, 0, 𝑡)

𝜕𝑥2
= 0,

𝜕𝜉(𝑥1, 𝑙2, 𝑡)

𝜕𝑥2
= 0, 

(𝑥1, 𝑡) ∈ (0, 𝑙1) × (0, 𝑇). 

Then, applying the formulas for integration by parts and 

using conditions (6), we hav 

∫ (
𝜕2𝜉

𝜕𝑡2
+ 𝑎2𝛥2𝜉) 𝑢(𝜐)𝑑𝑥1𝑑𝑥2𝑑𝑡

𝑄

= 

= ∫ 𝑢(𝑥1, 𝑥2, 𝑇)𝜓0(𝑥1, 𝑥2)𝑑𝑥1𝑑𝑥2
𝛺

+ ∫ 𝜓1(𝑥1, 𝑥2)
𝜕𝑢(𝑥1, 𝑥2, 𝑇)

𝜕𝑡
𝑑𝑥1𝑑𝑥2

𝛺

+ 

+𝑎2 (∫ ∫ 𝜐1
0(𝑥2, 𝑡)

𝜕𝛥𝜉(0, 𝑥2, 𝑡)

𝜕𝑥1

𝑑𝑥2𝑑𝑡
𝑙2

0

𝑇

0

− ∫ ∫ 𝜐2
0(𝑥2, 𝑡)

𝜕𝛥𝜉(𝑙1, 𝑥2, 𝑡)

𝜕𝑥1

𝑑𝑥2𝑑𝑡
𝑙2

0

𝑇

0

+ 

+ ∫ ∫ 𝜐1
1(𝑥2, 𝑡)𝛥𝜉(0, 𝑥2, 𝑡)𝑑𝑥2𝑑𝑡

𝑙2

0

𝑇

0
−

∫ ∫ 𝜐2
1(𝑥2, 𝑡)𝛥𝜉(𝑙1, 𝑥2, 𝑡)𝑑𝑥2𝑑𝑡

𝑙2

0

𝑇

0
+                   (8) 

+ ∫ ∫ 𝜐3
0(𝑥1, 𝑡)

𝜕𝛥𝜉(𝑥1, 0, 𝑡)

𝜕𝑥2

𝑑𝑥1𝑑𝑡
𝑙1

0

𝑇

0

− ∫ ∫ 𝜐4
0(𝑥1, 𝑡)

𝜕𝛥𝜉(𝑥1, 𝑙2, 𝑡)

𝜕𝑥2

𝑑𝑥1𝑑𝑡
𝑙1

0

𝑇

0

+ 

+ ∫ ∫ 𝜐3
1(𝑥1, 𝑡)𝛥𝜉(𝑥1, 0, 𝑡)𝑑𝑥1𝑑𝑡

𝑙1

0

𝑇

0

− ∫ ∫ 𝜐4
1(𝑥1, 𝑡)𝛥𝜉(𝑥1, 𝑙2, 𝑡)𝑑𝑥1𝑑𝑡

𝑙2

0

𝑇

0

) + 

+ ∫ 𝜉 (
𝜕2𝑢

𝜕𝑡2 + 𝑎2𝛥2𝑢) 𝑢(𝜐)𝑑𝑥1𝑑𝑥2𝑑𝑡
𝑄

. 

Using (4), from (8) we obtain 

𝑎2 (∫ ∫ 𝜐1
0(𝑥2, 𝑡)

𝜕𝛥𝜉(0, 𝑥2, 𝑡)

𝜕𝑥1

𝑑𝑥2𝑑𝑡
𝑙2

0

𝑇

0

− ∫ ∫ 𝜐2
0(𝑥2, 𝑡)

𝜕𝛥𝜉(𝑙1, 𝑥2, 𝑡)

𝜕𝑥1

𝑑𝑥2𝑑𝑡
𝑙2

0

𝑇

0

+ 

+ ∫ ∫ 𝜐1
1(𝑥2, 𝑡)𝛥𝜉(0, 𝑥2, 𝑡)𝑑𝑥2𝑑𝑡

𝑙2

0

𝑇

0

− ∫ ∫ 𝜐2
1(𝑥2, 𝑡)𝛥𝜉(𝑙1, 𝑥2, 𝑡)𝑑𝑥2𝑑𝑡

𝑙2

0

𝑇

0

+ 

+ ∫ ∫ 𝜐3
0(𝑥1, 𝑡)

𝜕𝛥𝜉(𝑥1, 0, 𝑡)

𝜕𝑥2

𝑑𝑥1𝑑𝑡
𝑙1

0

𝑇

0

− ∫ ∫ 𝜐4
0(𝑥1, 𝑡)

𝜕𝛥𝜉(𝑥1, 𝑙2, 𝑡)

𝜕𝑥2

𝑑𝑥1𝑑𝑡
𝑙1

0

𝑇

0

+ 

+ ∫ ∫ 𝜐3
1(𝑥1, 𝑡)𝛥𝜉(𝑥1, 0, 𝑡)𝑑𝑥1𝑑𝑡

𝑙1

0

𝑇

0
−

∫ ∫ 𝜐4
1(𝑥1, 𝑡)𝛥𝜉(𝑥1, 𝑙2, 𝑡)𝑑𝑥1𝑑𝑡

𝑙2

0

𝑇

0
) = 0, 

 ∀𝜐𝑖
0, 𝜐𝑖

1 ∈ 𝐿2( (0, 𝑙2) × (0, 𝑇)), 𝑖 = 1,2, 

∀𝜐𝑖
0, 𝜐𝑖

1 ∈ 𝐿2((0, 𝑙1) × (0, 𝑇)), 𝑖 = 3,4. 

Hence from arbitrariness 

 𝜐𝑖
0, 𝜐𝑖

1 ∈ 𝐿2( (0, 𝑙2) × (0, 𝑇)), 𝑖 = 1,2, 

𝜐𝑖
0, 𝜐𝑖

1 ∈ 𝐿2((0, 𝑙1) × (0, 𝑇)), 𝑖 = 3,4 

we get that 

𝛥𝜉(0, 𝑥2, 𝑡) = 0, 𝛥𝜉(𝑙1, 𝑥2, 𝑡) = 0, 
𝜕𝛥𝜉(0, 𝑥2, 𝑡)

𝜕𝑥1

= 0,
𝜕𝛥𝜉(𝑙1, 𝑥2, 𝑡)

𝜕𝑥1

= 0, 

(𝑥2, 𝑡) ∈ (0, 𝑙2) × (0, 𝑇),                       (9) 

𝛥𝜉(𝑥1, 0, 𝑡) = 0, 𝛥𝜉(𝑥1, 𝑙2, 𝑡) = 0, 
𝜕𝛥𝜉(𝑥1, 0, 𝑡)

𝜕𝑥2

= 0,
𝜕𝛥𝜉(𝑥1, 𝑙2, 𝑡)

𝜕𝑥2

= 0, 

(𝑥1, 𝑡) ∈ (0, 𝑙1) × (0, 𝑇). 

Then from equation (5) and from conditions (7), (9), in 

view of the results from [15], it follows that  

𝜉(𝑥1, 𝑥2, 𝑡) = 0, (𝑥1, 𝑥2, 𝑡) ∈ 𝑄. 

And from here it turns out 

𝜓0(𝑥1, 𝑥2) ≡ 0, 𝜓1(𝑥1, 𝑥2) ≡ 0 

and the system is manageable. 

The theorem has been proven. 

Note that in order for all the above transformations to be 

legal, it would be necessary to first smooth out all the 

functions 

𝜑0(𝑥1, 𝑥2) ∈ 𝐻2(𝛺), 𝜑1(𝑥1, 𝑥2) ∈ 𝐿2(𝛺), 

 𝜐𝑖
0, 𝜐𝑖

1 ∈ 𝐿2( (0, 𝑙2) × (0, 𝑇)), 𝑖 = 1,2, 

𝜐𝑖
0, 𝜐𝑖

1 ∈ 𝐿2((0, 𝑙1) × (0, 𝑇)), 𝑖 = 3,4, 

𝜓0(𝑥1, 𝑥2) ∈ 𝐻0
2(𝛺), 𝜓1(𝑥1, 𝑥2) ∈ 𝐿2(𝛺) 



carry out the indicated transformations for smooth solutions 

of the corresponding smoothed boundary value problems, and 

then go to the limit on the smoothing parameter and arrive at 

the required relations for weak solutions of boundary value 

problems [16]. We mean that when carrying out the above 

transformations, such a procedure has already been 

completed. 

IV. CONCLUSION 

The work shows that the system under consideration (1)-
(3) is controllable. 
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