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Abstract—In this paper, we consider a boundary-value
problem with boundary control for the equation of vibrations of
the thin-plate. It is known that many practical problems are
described by the equation of oscillation of a thin plate, but the
controllability problems with this equation have almost never
been studied. One of these questions is investigated in the
present work. After determination the controllability, by
introducing an auxiliary boundary value problem and using the
result of the Han-Banach theorem, the controllability of the
system under consideration is proved.
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I. INTRODUCTION

It is known that a number of processes in physics and
technology are described by fourth-order partial differential
equations. For example, the equations of vibration of a rod,
tuning fork, elastic plate, thin plate, etc. are such equations
[1], [2]. Therefore, studies of optimal control and
controllability problems in processes described by such
equations are important tasks [3]. When control functions are
boundary functions, learning control problems becomes too
difficult. But we note that the problem of boundary control
from theoretical and practical points of view is more natural
compared to problems with distributed controls.

Note that in the works [4]-[7] some related control
problems were considered. Namely, in [4] the problem of
precise controllability of a three-dimensional linear-elastic
thin plate with control on the boundary and inside the plate is
considered, in [5] the problem of controlling transverse
vibrations of a thin plate is considered, control actions are
applied to the boundary of the plate, which fills a certain
limited area on plane, and in [6], [7] the problem of boundary
optimal control for the linear equation of oscillations of a thin
plate was studied, and the existence and unigueness theorem
of optimal control was proved.

It should be noted that recently the problem of
controllability of plate oscillations has been intensively
studied [8]-[13].

In the work considered, one controllability problem is
studied for the vibration equation of a thin plate.

Il. PROBLEM STATEMENT

Let the controlled process be described by the

equation of oscillations of a thin plate
62

?+a Zu=08Q=0x(0,T),
=(0,11) x(0,13) )
with initial
i 0
u(xy, x2,0) = @o(xq, x3), M = @1 (x1,%3),

(x1,%;) € 02 )
and boundary conditions

u(0,xz,t) = 7 (x2, 1), u(ly, Xz, t) = v3(xz,1),
0u(0,x,,t) ou(ly, x,, t) 1
T 1( 2 )' T =V; (x2't)'

(x5,t) € (0,1,) x (0,T),
u(x1,0,8) = 03 (xq, 1), u(y, lp, ) = v (xy,t),  (3)

ou(x4,0,t) ou(xy, ly,t)
Tox, v3(x1, ), o, v; (xy, £),
(x1,t) € (0,1,) x (0, T),
where a?,1;,1,, T - are the given positive numbers, 4 -is

Laplace operator with respect to x;, x,, @o(x1, x,) € H2(2),
©1(x;,x;) € L,(2) - are the given functions, v{(x,,t),
Ug (x2' t), Ug (xl' t), U2 (xlﬁ t), vll (XZ! t)v U% (x2' t)v U% (xlﬁ t)v
vi(xy,t) - are the control functions.
The class of admissible controls is taken to be the space
U = {v7 (x2, £), 03 (2, £), 03 (21, 1), U2 (x4, 1),
vi (2, 1), 03 (%, 1), 03 (21, 1), vz (x4, ),
v, vt € L,((0,1,) X (0,T)), i =12,
v?, v} € Ly((0,1;) X (0,T)),i = 3,4}
A weak solution to this problem is determined using
transposition [3]: there is a unique function u(v) € L,(Q),
for which

’p
ju(v) (—+a (p) dx;dx,dt =
L2 94¢(0,x,,t
Uf 0 (x,, 1) (pgx’” ) i, dt
1

L2 aA(p(ll,xz, t)
f f 20—
l

I
+J J v (x5, )49 (0, x,, t)dx,dt
o Jo

dx,dt +

T rly
—J- J- v (x5, )ALy, x5, t)dx,dt +
6A<p(x1,0 t)

Iy
X1,
ff Pt ax,
h 24 Lt
ffv4(x1,t) ga(xl 2) dx,dt +

+f flv (x1, )@ (x4, 0, t)dxldt—
I 2 vk, 04 (21, Ly, t)dxldt),wp €,

v dxgde

where
do
={<p| Yo € L0 Ipl < 4.2 € 1,(0). 2 2 1.(0)
d , X5, T
<p(x1!x2'T) = 0;% = 0,<p(0,x2,t) = 0,
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(p(ll' X2, t) = 01 (p(xl' 0' t) = Ov (p(xli l2' t) = 0'

09 (0,x,,t) ~0 0p(ly, x,1) _ 0p(x1,0,1) _
0x, ’ dx, T 0x, ’
0@ (xq1,lat)
T = 0 (xl,xz) € .Q}

Definition. A system whose state is defined as a solution
to problem (1)-(3) is called controllable if the observation

ou(xq,x,, T
O T

sweeps the space L, (£2) x H~2(£2), when the control
v = (V0 (xz, 1), 3 (X, 1), 13 (x4, 1), V2 (X1, 1), V] (X, 1),
3 (X2, 1), U3 (X1, 1), V3 (X1, 1))
runs through the space U, where H=2() is the conjugate
space to the space Hz2 (), and

a
H3 (@) = {(xCa x)lx € H2 (@), xlr = 0,2 =0},
I" - is the outer normal to the boundary of I".

I1l. MAIN RESULTS

In this problem, the following theorem is proved:

Theorem. Under the above conditions imposed on these
problems (1)-(3), this system is controllable

Proof. Let the vector (Yo(xy,x3),¥1(xq,x,)) be
orthogonal to the image U under the mapping

ou(xq, x,, T
O

f u(xq, x2, TPo (1, x2)dx1dx, +
0

[, 22Dy, (xy, 2)doxydx, = 0, (@)
where o (x1, x,) € HG(2), 1 (x1, %) € L,(02).
We want to find out whether it will follow from this that

PYo(xy,x2) = 0, 1 (xq, x7) = 0 [14].
Let us assume that the function &(x,, x,, t) is a solution to
the following auxiliary problem:

+a2A2€ =0,0=02x(0,T),

6t2
= (0' ll) >f')f((0’ 12)1) (5)
o, T
§(x1, x5, T) = —1/)1(x1,x2), % = 1o (%1, X2),

(x1,x3) € 0, (6)

£(0,25t) = 0,8 (ly, xp, t) = 0,202 ¢ 262D _

1
(x2,t) € (%;(2) XO((; T), 20 (7
_ _ x1, t _ xl, Z't _

&E(x1,0,8) =0,&(x1,15,t) =0, %, =0, o, =0,

(x1,t) € (0,1)) x (0,T).
Then, applying the formulas for integration by parts and
using conditions (6), we hav

25 22
f <6t2 + a4 f) u(v)dx,dx,dt =

= f u(xy, X2, T)Po (X1, x2)dx, dx;
0

ou(xq, x,, T
Md?ﬁdxz'k

f Y1 (x4, X2)

+J) 120t (s, ©)AE(0, x5, t)dx,dt —
I 2 03 () )48 (L, x5, O dxydt + ®)
Iy
J. f U3(x1‘t)w 1dt

11
ff V9 (xp, ) aAf(g;;lz't) xdt +
T
+f f v3 (%, ) A& (x4, 0, t)dx, dt
o Jo _—
—f f vi(xl,t)Af(xl,lz,t)dxldt>+

+ 0,8 (2% + a20%u) u(v)de; d dt.

ot2

Using (4), from (8) we obtain
I
(f f 20 (x 2't)aAf(O xz,t) dxydt

f flz (Z’t)aAf(ll, X0

or dxedt+

T Ly
+j f vi(x,, £)AE(0, x5, t)dx,dt
0o Jo _—
- J‘ j‘ U%(xz, t)AE(ll, xz, t)dedt +

L a4 ,0,t
ff O(x,, ) ngl ) . de
L
Jf (xl,t)i(mf(gl'2 2t) x,dt +

+f flv (x,, £)A& (x4, 0, t)dx, dt —

Iy 3 v, )88 (1, L, O)dxy dt) = 0,
vol, vt € L,((0,1,) X (0,T)),i = 1,2,
vol, v} € L,((0,1;) X (0,T)),i = 3,4.
Hence from arbitrariness
v, vl € L,((0,1) X (0,T)),i = 1,2,
v, vl € L,((0,1)) x (0,T)),i =3,4

we get that
AE(O,xz,t) = O,Ag(ll,xz,t) = 0,
94E(0,%5, )  DAE(ly, X5,t)
0x, - 0x; o
(x2! t) € (0! 12) X (0! T)' (9)

Aé(xq,0,t) = 0,48(xy, 15, t) =0,
04&(x4,0,t) 04&(xq, 15, 1)
=0, =0,
dx, dx,
(xq,t) € (0,1;) x (0,T).

Then from equation (5) and from conditions (7), (9), in

view of the results from [15], it follows that
$(x1,%2,t) = 0, (x4, x5, ) € Q.
And from here it turns out
PYo(x1,x2) = 0, (21, %) =0

and the system is manageable.

The theorem has been proven.

Note that in order for all the above transformations to be
legal, it would be necessary to first smooth out all the
functions

Po(x1, %) € H2(Q2), 91 (%1, %7) € L(Q),
v, vt € L,((0,1,) x (0,T)),i = 1,2,
v, v} € L,((0,1,) X (0,T)),i = 3,4,

Yo (1, x2) € HE (D), 1 (%1, x2) € Lp(12)




carry out the indicated transformations for smooth solutions
of the corresponding smoothed boundary value problems, and
then go to the limit on the smoothing parameter and arrive at
the required relations for weak solutions of boundary value
problems [16]. We mean that when carrying out the above
transformations, such a procedure has already been
completed.

IV. CONCLUSION

The work shows that the system under consideration (1)-
(3) is controllable.
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