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Abstract. The problem of developing a high-quality and adequate mathematical model that 
describes the movement of a train using models of a viscoelastic material is proposed. A 
mathematical model that uses fractional derivatives more adequately describes the 
mechanical aspects of the movement of the object under consideration. 
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1. INTRODUCTION  
 

Description of the properties of many media, takes into account the loading mode and its "prehistory" 
and allows you to predict the behavior of these media under various loads. The calculation scheme of 

the railway train is presented as a multi-element complex of successively connecting viscoelastic bodies. 
The weight of the train during movement is also subjected to longitudinal and transverse deformations. 
The problem of developing a high-quality and adequate mathematical model that describes the 
movement of a train using models of a viscoelastic material is proposed. The model should not be too 
complex and allow the solvability of the corresponding problems. 

 
 

2. PROBLEM STATEMENT AND METHOD SOLUTION 
 

The calculation scheme of the railway train is presented as a multi-element complex of successively 
connecting viscoelastic bodies. 

 

 
 

Fig 1. Calculation scheme of the train. 
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where F(x,t) is the electric locomotive traction force, mi are masses of stock elements, Fis(x,t) are friction 
forces.  

 

2.1. Determination of the traction force of the electric drive and the forces of resistance to  

       movement 

 
The problem of transient processes of electric drives used in electric locomotives is investigated in 

order to study complex oscillations of the entire train during the motion process. At the same time, we 
consider the torsional vibrations faced by the train in the process of movement. The weight of the train 
during movement is also subjected to longitudinal and transverse deformations. These vibrations of the 
driving train can be described by nonlinear integral-differential equations. The movement of an AC 

electric drive is described by the equation [1]: 

𝐽
𝑑𝜔𝐻(𝑡)

𝑑𝑡
= 𝐶1

2Φ𝜕в𝜔𝑃(𝑡)

1 + 𝜔𝑃
2 (𝑡)

− 𝑀𝐻(𝑡), 

 

where 𝜔𝐻  – is the angular velocity of rotation of the rotor, 𝐽 – is the moment of inertia of the actuator, 

𝜔𝑃 – is the frequency of the current in the rotor, 𝑀𝐻  – is the moment of resistance by the (load) of the 

actuator, 𝐶1 – is a constant coefficient, Φ𝜕В – is the value of the useful resulting magnetic flux, and, in 
relative units has the following form 

                                                      
𝑑𝜈𝐻(𝑡′)

𝑑𝑡′
=

2Φ2𝜔(𝑡′)

1 + 𝜔2(𝑡′)
− 𝜇𝐻(𝑡′),                                                            (1) 

 
where 

                                Φ =
Φ𝜕В

Φ𝑘𝑝
,   𝜔 =

𝜔𝑃

𝜔𝑘𝑃
,   𝜈𝐻 =

𝜔𝐻

𝜔𝐶
,   𝜇𝐻 =

𝑀𝐻

𝑀𝑘𝑃
,   𝑡′ =

𝑡

𝑇𝑀
′                                      (2) 

 
The derivation of the linear equation of the transverse vibrations of the trains with sequentially 

elastically connected wagons is explained in detail and the mechanics of the process is given in the 

papers [1,2,4]. The solution to this equation given in [2] is the function F(x,t). 
 

2.2. Selection of the viscoelasticity model of physically defining relations 

 
 In the standard model of a linear viscoelastic body, a series composed of time derivatives of the stress 
field is equated to a series composed of time derivatives of the strain field: 

                                         𝜎(𝑡) + ∑ 𝑏𝑖

𝑚

𝑖=1

𝑑𝑖

𝑑𝑡𝑖
𝜎(𝑡) = 𝐸0𝜀(𝑡) + ∑ 𝐸𝑗

𝑛

𝑗=1

𝑑𝑗

𝑑𝑡𝑗
𝜀(𝑡)                                           (3) 

 
This model is a generalization of the previously considered viscoelastic Voigt models. But for 

viscoelastic materials, the mechanical properties of which significantly depend on the frequency, the 
number of derivatives in these series is large. Therefore, working with the model takes a lot of time and 
leads to high-order differential equations [2,4], which greatly complicates the search for eigenvectors 
and eigenvalues.  

The only model that can qualitatively match the results of experiments on polymeric materials is a 
model based on fractional derivatives. Fractional calculus has been successfully used to describe 
viscoelastic materials for almost 100 years. 

 
2.3. Rationale for applying the fractional differential approach 

 
The fractional differential approach has been successfully applied by many researchers to describe 

the rheological behavior of organic glasses, elastomers, polyurethane, and other materials. Depending 
on a number of factors (deformation conditions, sample geometry, etc.), the relationship between these 
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two processes changes. For extremely oriented samples, the limiting process is the breaking of the main 
bonds, since the possibilities for the implementation of plastic deformation processes in them are small. 

In plastic polymers, where the volume of plastically (or forced-elastically) deformed material is large, a 
situation may arise when the energy required for plastic deformation and propagation of the main crack 
through the plastic deformation zone will be the limiting parameter of the fracture process. When a solid 
body is deformed, a heat flux caused by deformation is generated. According to the first law of 
thermodynamics 

𝑑𝑈 = 𝑑𝑄 + 𝑑𝑊 
 

states that the change in internal energy in the sample (𝑑𝑈) is equal to the sum of the work (𝑑𝑊) done 

on the sample and the heat flux (𝑑𝑄) into the sample. This relation is valid for any deformation, 
reversible or irreversible. There are two thermodynamic irreversible cases for which 

𝑑𝑄 = −𝑑𝑊 
 

These are the uniaxial deformation of the Newtonian fluid and the ideal elastoplastic deformation. 

For solid-state polymers, the deformation has a significantly different character: The 𝑄/𝑊 ratio is not 
equal to a unit and varies within 0.35–0.75 depending on the nature of the material and the loading 
regime. In other words, thermodynamically ideal plasticity is not realized for these materials. The reason 
for this effect is the fractality of the structure of these polymers, which leads to fluidity not in the entire 
volume, but only in its part. The appearance of the fractional differentiation operator is due to the 
aforementioned fractality of the polymer structure.  

Thus, the process of deformation of solid-state polymers is realized in a fractal space with the 
dimension 𝑑𝑓and is described using the fractal time 𝑡, which belongs to the points of the Cantor set. To 

describe evolutionary processes with fractal time, the mathematical apparatus of fractional 

differentiation and integration is used. In this case, the fractional exponent 𝛽 coincides with the fractal 
dimension of the Cantor set and indicates the portion of system states that have been preserved over the 

entire evolutionary time 𝑡. For fractal objects in three-dimensional space, the parameter 𝛽 is equal to the 

fractional part of 𝑑𝑓 [3]: 

𝛽 = 𝑑𝑓 − 2. 

 

The value of 𝛽 characterizes the portion of the fractal (polymer structure) that does not change during 
deformation.  

At present, the development of the concept of a fractal, using the mathematical apparatus of fractional 

integral-differentiation, has caused a trend to revise the basic principles of polymer mechanics. This 
helps to adequately describe systems with a complex spatial structure. Within its framework, it is 
possible to take into account the complex nature of nonlinear phenomena, such as memory effects and 
spatial correlations. In this case, not only previously known solutions are reproduced, but also their non-
trivial generalization is given.  

Another important feature is related to the self-similarity property of fractal structures. Unlike 
traditional ways of describing a system, the concept of a fractal takes into account the structure of the 

environment, thereby combining micro- and macroscopic levels of system description. It is this method 
that is important for complex multicomponent systems that are out of dynamic equilibrium, which are 
polymeric materials.  

Also interesting is the case, which is a generalization of the behavior of a material with a single 
sudden change in the applied surface forces. Let us assume that a material with the properties of elasticity 
and creep described above is subjected to two non-simultaneously occurring changes in a uniform stress 
state, which are superimposed on one another. After the first application of stress, the behavior of the 

material will depend on time as well as on the magnitude of the initially applied stress. Let us now 
consider the situation that arises after an arbitrarily short time interval after the sudden application of 
the second stress. The behavior of the material will depend not only on the second change in external 
forces, but also on the continuing influence of the first applied stress.  
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Note that the behavior of an elastic material at any time depends only on the total stress level. Thus, 
the considered system of a more general type has a property that can be called the memory effect. 
Moreover, the behavior of this system is determined not only by the current stress state, but also by all 

past stress states, so that, generally speaking, the material “remembers” these past states. A similar 
situation arises if we turn to deformations; in this case, the current stress depends on the entire strain 
history. For this reason, some authors call viscoelasticity a hereditary theory.  

It should be noted that although most of the achievements in the theory of viscoelasticity are recent, 
the theory formulated for the linear isotropic case has existed for a long time.  

The founder of the use of fractional calculus in viscoelasticity, as noted, was P.G. Nutting, who in 
1921 observed that the relationship between stress and strain for many complex materials is described 
by the equation [1]: 

𝜎(𝑡) = 𝑐0𝛾𝑡−𝑘, 
 

where 0 < 𝑘 < 1.  
At constant strain, the relationship yields an inverse power law of relaxation. An overview of some 

other work on the application of fractional calculus to viscoelasticity can be found in the relevant 
scientific and technical literature.  

The calculation of the mechanical behavior of a moving train for a given time dependence of loading 
should be based on an adequate mathematical model. A mathematical model that uses fractional 

derivatives more adequately describes the mechanical properties of many media, takes into account the 
loading regime and its “prehistory”, and makes it possible to predict the behavior of these media under 
various loads.  

In general form, the model of physical relations of a viscoelastic structural element containing 
fractional derivatives has the form [1]: 

                                  𝜎(𝑡) + ∑ 𝑏𝑖𝐷𝛼𝑖𝜎(𝑡)

𝑚

𝑖=1

= 𝐸0𝜀(𝑡) + ∑ 𝐸𝑗𝐷𝛽𝑗𝜀(𝑡)

𝑛

𝑗=1

                                (4) 

 
where 𝜎(𝑡) is the stress, 𝜀(𝑡) is the strain at time 𝑡, 𝑏𝑖, 𝐸𝑗 , 𝛼𝑖, 𝛽𝑗 – are model parameters, and 𝐷𝜌 is the 

fractional differentiation operator of order 𝜌.  
In general, the formulation of the equations of motion using fractional order derivatives requires 

setting no more than five empirical parameters. This is less than is usually required when using the 
standard model of a linear viscoelastic body (1), since this model is consistent with the basic physical 

laws of the phenomenon under consideration. Thus, the model based on fractional derivatives is 
attractive for engineering calculations. In most cases, the number of required parameters will be even 
less than five.  

As shown in the scientific literature, to model many viscoelastic media, it is sufficient to restrict 
ourselves to the model 

                                             𝜎(𝑡) + 𝑏𝐷𝛼𝜎(𝑡) = 𝐸0𝜀(𝑡) + 𝐸1𝐷𝛽𝜀(𝑡),                                       (5) 

 
which, in the absence of instantaneous elasticity, which is typical for most polymers, is reduced to a 
simple model 

                                                        𝜎(𝑡) = 𝐸1𝐷𝛽𝜀(𝑡),                                                            (6) 
 

where 𝜎(𝑡) is the stress, 𝜀(𝑡) is the strain, 𝐸1 and 0 < 𝛽 < 1 are the media material parameters. Here 

𝐷𝛽 – is the fractional differentiation operator in Caputo's definition. 

The parameters of a viscoelastic medium are intermediate between the parameters of a viscous 
inelastic medium  

(𝛽 = 1, 𝜎(𝑡) = 𝐸𝜀(𝑡)) 
 
and an absolutely elastic nonviscous medium 

(𝛽 = 0, 𝜎(𝑡) = 𝜂
𝑑𝜀(𝑡)

𝑑𝑡
), 
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i.e. the parameter 𝛽 is a characteristic of the mechanical properties of the media material.  
 
 

3. CONCLUSION  
 

The proposed model is one of the first attempts to apply the fractional differential approach to solving 
such problems. The next task for the authors will be the solving of similar problems using the technique 
given in [1], when hereditary operators of defining relations are represented as well-studied tabulated 
Mittag-Leffler type functions. 
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