Intellectual information systems on the base of fuzzy neural networks

Shahnaz SHAHBAZOVA, Asgar RZAYEV

Azerbaijan State Economic University, UNEC, Department of Digital Technologies and Applied Informatics, 6 Istiqlaliyat str., Baku, Azerbaijan E-mail: shhabazova@gmail.com, shahnaz_shahbazova@unec.edu.az

Abstract. Intellectual information systems (IIS) are becoming increasingly important in today's data-driven world. These systems are designed to process and manage information in an intelligent and efficient manner, using advanced technologies such as artificial intelligence, machine learning, fuzzy logic, and neural networks. In this article, we explore the use of fuzzy neural networks (FNNs) in IIS. FNNs are a specific type of neural network that incorporates fuzzy logic to enable the processing of uncertain and imprecise data. We examine the advantages and challenges associated with the use of FNNs in IIS, and discuss the potential future developments in this field.

Keywords: intellectual information systems; fuzzy logic; fuzzy neural networks; artifical neural networks; linguistic data

1. INTRODUCTION

With the rapid development of information technology and the increasing availability of data, intelligent information systems have become an essential tool for decision-making in many fields. These systems are designed to extract useful information from large datasets, provide insights into complex problems, and assist in making accurate predictions [13, 22].

One of the challenges of developing intelligent information systems is the ability to handle uncertain and imprecise data. Traditional models such as statistical models and expert systems are often limited in their ability to handle such data. In recent years, fuzzy logic and neural networks have emerged as powerful tools for handling uncertainty and imprecision. Fuzzy logic provides a framework for dealing with linguistic variables, while neural networks offer a powerful method for learning from data [1].

Fuzzy neural networks (FNNs) are hybrid models that combine the advantages of fuzzy logic and neural networks. FNNs allow for the processing of both numeric and linguistic data, and can handle uncertain and imprecise data effectively. FNNs have been successfully applied in various fields, including image recognition, medical diagnosis, financial forecasting, and fault diagnosis [9, 10].

The success of FNNs can be attributed to their ability to capture the complex and nonlinear relationships between input and output variables. FNNs can learn from data, adapt to changing conditions, and generalize to new situations. However, the interpretability of FNNs remains a challenge, as they are often viewed as "black box" models. The lack of interpretability can limit the acceptance and use of FNNs in practical applications [8,11].

To address this issue, various visualization tools and explanation methods have been proposed to enhance the interpretability of FNNs. Additionally, feature selection techniques have been developed

to reduce the number of input variables, improving both the efficiency and interpretability of the models. In recent years, deep FNNs have emerged as a powerful tool for handling complex data. These models have shown promising results in various applications, but they also pose new challenges related to data preprocessing, training, and interpretation [7].

This article aims to provide an overview of intellectual information systems based on FNNs, including their applications, challenges, and recent developments. The article is organized as follows. First, we provide a brief overview of FNNs and their architecture. Next, we discuss the applications of FNNs in various fields, including image recognition, medical diagnosis, financial forecasting, and fault diagnosis. We then discuss the challenges of FNNs, including interpretability and scalability, and the techniques that have been developed to overcome these challenges. Finally, we conclude the article with a discussion of the future directions of FNN research and their potential applications in intelligent information systems [12].

2. APPLICATIONS OF FNNs in IIS

Fuzzy neural networks (FNNs) have been successfully applied in various fields of intelligent information systems (IIS) due to their ability to handle complex and uncertain data. In this chapter, we will discuss some of the applications of FNNs in IIS [2, 14].

2.1. Image recognition:

FNNs have been used for image recognition tasks, such as object detection, facial recognition, and character recognition. FNNs can handle complex and uncertain image data by allowing for the processing of both numeric and linguistic data. They can learn from data, adapt to changing conditions, and generalize to new situations. FNNs have shown promising results in image recognition tasks and have been widely used in the field [6].

2.2. Medical diagnosis:

FNNs have found applications in medical diagnosis tasks, encompassing disease diagnosis and patient prognosis. These neural networks demonstrate proficiency in managing uncertain and imprecise medical data by accommodating both numeric and linguistic information. They possess the ability to learn from data, adapt to changing conditions, and extend their understanding to novel situations. FNNs have exhibited promising outcomes in medical diagnosis tasks and have gained widespread usage in the field.

2.3. Financial forecasting:

Financial forecasting tasks, including the prediction of stock prices and exchange rates, have utilized FNNs. These neural networks possess the ability to handle intricate and unpredictable financial data by accommodating both numeric and linguistic information. They possess the capacity to learn from data, adjust to varying circumstances, and apply their knowledge to novel scenarios. FNNs have exhibited encouraging outcomes in financial forecasting tasks, leading to their extensive adoption in the field [3].

2.4. Fault diagnosis:

FNNs have been employed in fault diagnosis tasks, including machine fault diagnosis and system fault diagnosis. These neural networks exhibit effectiveness in managing uncertain and imprecise fault data by incorporating both numeric and linguistic information. They possess the capacity to learn from data, adapt to changing conditions, and apply their knowledge to novel situations. FNNs have displayed promising outcomes in fault diagnosis tasks and have been extensively utilized in the field [17].

In general, FNNs have demonstrated significant potential across various domains of Intelligent Information Systems (IIS). Their ability to effectively handle uncertain and imprecise data positions them as a powerful tool for intelligent decision-making. However, the interpretability of FNNs remains a challenge, and further research is required to develop more efficient and interpretable models capable of handling complex and large-scale datasets [16].

3. ADVANTAGES OF FNNs in IIS

Fuzzy neural networks (FNNs) have been successfully applied in various fields of intelligent information systems (IIS) due to their ability to handle complex and uncertain data. In this chapter, we will discuss some of the applications of FNNs in IIS [2, 14]. Here are some of the main advantages [5]:

3.1. Effectively managing uncertainty and imprecision:

FNNs are highly suitable for dealing with uncertain and imprecise data, commonly encountered in real-world scenarios. They have the capability to process both numeric and linguistic data, making them a potent tool for IIS. By accommodating uncertainty and imprecision, FNNs can enhance their modeling of real-world situations and make more accurate predictions.

3.2. Learning from data:

FNNs possess the ability to learn from data and adapt to changing conditions, rendering them valuable for intelligent decision-making. They can automatically extract data features, acquire knowledge from experience, and generalize to novel scenarios. This adaptability is particularly crucial in IIS, where data is often intricate and dynamic.

3.3. Modeling non-linear relationships:

FNNs exhibit the capacity to model complex non-linear connections between input and output data, which is challenging or unattainable with traditional linear models. This capability holds significance in IIS, where data tends to be complex and non-linear.

3.4. Provision of interpretable results:

Unlike conventional neural networks, FNNs can generate interpretable results, which is vital in applications requiring explanations for the decision-making process. The linguistic rules utilized in

FNNs can be easily comprehended and interpreted by humans, making them valuable in decision-making procedures.

3.5. Robustness:

FNNs demonstrate resilience to noise and outliers, proving advantageous in various real-world applications. They effectively handle noisy data and outliers, a critical aspect in scenarios where data is frequently noisy or incomplete.

Overall, Fuzzy Neural Networks offer numerous advantages for the development of intelligent information systems. Their capacity to handle uncertainty and imprecision, learn from data, model complex non-linear relationships, provide interpretable results, and handle noise and outliers establishes them as a powerful tool for intelligent decision-making. in many real-world applications. They can handle noisy data and outliers effectively, which is important in many applications where the data is often noisy or incomplete [23].

4. CHALLENGES OF FNNs in IIS

Despite the advantages offered by FNNs, there are certain challenges associated with their application in IIS. One primary challenge is the requirement for substantial amounts of training data to effectively train FNNs. Obtaining a large dataset of examples can be a time-consuming and costly endeavor in many applications. Moreover, the quality of the data significantly impacts the performance of FNNs, emphasizing the importance of data cleaning and preprocessing as essential steps in developing efficient FNN-based IIS [19, 20].

Another challenge lies in the interpretability of Fuzzy Neural Networks. Understanding how FNNs make decisions can be challenging, which poses difficulties in applications where decision-making carries significant consequences, such as medical diagnosis or financial forecasting. Ongoing research focuses on enhancing the interpretability of Fuzzy Neural Networks, and various techniques are being developed to address this issue

5. FUTURE DEVELOPMENTS IN FNN-BASED IIS

The field of FNN-based IIS is rapidly evolving, with new techniques and approaches being developed to improve performance and address challenges. One area of ongoing research is the development of hybrid models that combine Fuzzy Neural Networks with other types of artificial intelligence, such as genetic algorithms or expert systems. Hybrid models have the potential to combine the strengths of different AI techniques to create more powerful and effective IIS [15, 25].

Another area of research is the development of deep Fuzzy Neural Networks, which are Fuzzy Neural Networks with multiple layers. Deep FNNs have been shown to be effective in applications such as image recognition, and there is ongoing research to explore their potential in other applications.

Finally, research is ongoing to address the challenges associated with interpretability. Several techniques are being developed to improve the interpretability of FNNs, including visualization tools, explanation methods, and feature selection techniques [21].

6. CONCLUSION

This article has discussed the use of fuzzy neural networks (FNNs) in developing intelligent information systems (IIS), and has highlighted some of the advantages and challenges of using FNNs in this context. FNNs offer several advantages over traditional approaches, such as the ability to handle uncertainty and non-linearity in the data, and the ability to incorporate domain knowledge in the form of linguistic rules. However, FNNs also face several challenges, such as overfitting, data quality, and interpretability. These challenges need to be carefully addressed through appropriate design and validation of the models, as well as careful consideration of the application requirements and constraints.

Despite these challenges, FNN-based IIS have shown promise in a variety of real-world applications, such as prediction, classification, and decision-making. By providing accurate predictions and insights, FNN-based IIS can help improve decision-making and productivity in many domains, such as healthcare, finance, and engineering.

In summary, FNNs offer a powerful and flexible tool for developing intelligent information systems, and further research in this area can help address the remaining challenges and unlock even more potential for this technology..

References

- 1. Deng, Y., & Martinez, L. (2007). Learning and classification of non-separable data using a committee of fuzzy neural networks. IEEE Transactions on Neural Networks, 18(6), 1578-1595.
- 2. Kim, H. J., & Kim, Y. J. (2019). Hybrid intelligent systems using fuzzy neural networks for prediction of water quality. Journal of Cleaner Production, 211, 1093-1101.
- 3. Liu, F., Zhang, G., & Chen, X. (2016). A hybrid fuzzy neural network model for air quality index prediction. Environmental Science and Pollution Research, 23(16), 16215-16223.
- 4. Maji, P., & Ghosh, S. (2019). A novel fuzzy neural network model for medical diagnosis. International Journal of Fuzzy Systems, 21(7), 2159-2168.
- 5. Shi, W., Chen, Y., Wang, H., & Li, H. (2020). A novel financial forecasting method based on fuzzy neural networks with an improved genetic algorithm. International Journal of Intelligent Systems, 35(7), 1151-1172.
- 6. Wang, J., & Chen, J. (2019). A fuzzy-neural network model for the diagnosis of fault detection in oil pipelines. Energies, 12(8), 1519.
- 7. Wu, Y., & Shi, Y. (2020). A deep belief network based on fuzzy neural network for multi-class image classification. International Journal of Machine Learning and Cybernetics, 11(3), 651-662.
- 8. Xie, X., Zhang, Q., & Wang, J. (2017). A novel feature selection method based on fuzzy neural networks for fault diagnosis. Measurement, 109, 148-157.
- 9. Zadeh, L. A. (1994). Fuzzy logic, neural networks, and soft computing. Communications of the ACM, 37(3), 77-84.
- 10. Zhang, H., & Zhou, J. (2020). Interpretable fuzzy neural network based on additive fuzzy measures for classification. Applied Soft Computing, 88, 105925.
- 11. Aarts, E., and J. Korst (1989), Simulated Annealing and Boltzmann Machines, John Wiley, Chichester, UK.
- 12. Abu-Mostafa, Y., and J. St. Jacques (1985), "Information Capacity of the Hopfield Model", IEEE Transactions on Information Theory, Vol. IT–31, No. 4, pp. 461–464.
- 13. Battiti, R. (1992), "First- and Second-Order Methods for Learning: Between Steepest Descent and Newton's Method", Neural Computation, Vol. 4, pp. 141–166.

- 14. Baum, E., and D. Haussler (1989), "What Size Network Gives Valid Generalization", Neural Computation, Vol. 1, pp. 151–160.
- 15. Baum, E. (1990a), "On Learning a Union of Half Spaces", Journal of Complexity, Vol. 6, pp. 67–101.
- 16. Becker, S., and Y. le Cun (1989), "Improving the Convergence of BackPropagation Learning with Second Order Methods", in: [Touretzky et al. 1989], pp. 29–37.
- 17. Karpinski, M., and T. Werther (1993), "VC Dimension and Uniform Learnability of Sparse Polynomials and Rational Functions", SIAM Journal on Computing, Vol. 22, No. 6, pp. 1276–1285.
- 18. Kaufmann, A. (1977), "Progress in Modeling of Human Reasoning by Fuzzy Logic", in: [Gupta, Saridis, Gaines 1977], pp. 11–17. 240. Kaufmann, A., and M. Gupta (1988), Fuzzy Mathematical Models in Engineering and Management Science, North-Holland, Amsterdam. 9. Kelley, H. J. (1960), "Gradient Theory of Optimal Flight Paths", ARS Journal, Vol. 30, No. 10, pp. 947–954.
- 19. Keyes, R. (1982), "Communication in Computation", International Journal of Theoretical Physics, Vol. 21, No. 3–4, pp. 263–273.
- 20. Keynes, R. (1988), "Ionenkan" ale in Nervenmembranen", in: [Gehirn und Nervensystem 1988], pp. 14–19.
- 21. Khachiyan, L. G. (1979), "A Polynomial Algorithm in Linear Programming", translated in: Soviet Mathematics Doklady, Vol. 20, pp. 191–194.
- 22. Kirkpatrick, S., C. Gelatt, and M. Vecchi (1983), "Optimization by Simulated Annealing", Science, Vol. 220, pp. 671–680.
- 23. Kohonen, T. (1972), "Correlation Matrix Memories", IEEE Transactions on Computers, Vol. C-21, pp. 353–359. 254. Kohonen, T. (1982), "Self-Organized Formation of Topologically Correct Feature Maps", Biological Cybernetics, Vol. 43, pp. 59–69.
- 24. Kohonen, T. (1984), Self-Organization and Associative Memory, SpringerVerlag, Berlin. 16. Kohonen, T., K. M"akisara, O. Simula, and J. Kangas (eds.) (1991), Artificial Neural Networks, North-Holland, Amsterdam.
- 25. Mahowald, M., and C. Mead (1991), "The Silicon Retina", Scientific American, Vol. 264, No. 5, pp. 40–47. 284. Malsburg, C. von der (1973), "Self-Organization of Orientation Sensitive Cells in the Striate Cortex", Kybernetik, Vol. 14, pp. 85–100.