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Abstract−The problem statement for the optimization of 
operational and organizational control systems is formulated 
and the general requirements for methods of solution are given. 
A probabilistic and deterministic approach to the problem of 
operational and organizational control taking into account the 
time factor is considered. 

Keywords−control systems, optimization methods, operational 
control, problems of synthesis 

I. INTRODUCTION 
The term "operational and organizational control" in this 

paper means the processes of control and decision-making in 
organization systems and operational control systems based 
on the use of the prediction principle with periodic 
adjustments based on the processing of current information, 
i.e., rolling plan principle. Systems of this type find 
application in automated control systems at all hierarchy 
levels, are widely used to improve efficiency in all segments 
of industrial production, to optimize the control of vehicles, 
urban economy of large industrial centers, etc. Such 
operational control systems are successfully used to solve 
emergency management tasks [1]. The specifics of such tasks 
are associated with the need for an operational, i.e., prompt 
control decision making, and reflects the fact of time shortage. 
The time resource for control decision making in most cases 
is not constant, but depends on the current situation. 
Therefore, it is difficult to formalize mathematically correctly 
within the framework of the general formulation of the control 
problem. As a result, the design engineer has to rely on 
intuition or perform laborious and inefficient enumeration. In 
this paper, this problem is solved using the principle of 
complexity. 

The term "operational and organizational control" reflects 
the two most significant features of the investigated control 
processes. The first of them is that the mathematical 

formalization of control problems of the control objects has 
constraints that are complex in form and various in content and 
do not fit entirely in the framework of known optimization 
problems, which requires taking into account a number of 
organizational measures. The second feature has to do with the 
need for operational, i.e., prompt control decision making and 
reflects the fact of time shortage. 

The development of methods suitable for use in 
operational and organizational control systems has so far 
been carried out almost independently in the areas of optimal 
control theory, mathematical programming, operations 
research and artificial intelligence. We have made an attempt 
to classify all the numerous methods of approximate solution 
by their functional characteristics, reflecting the factors of 
taking into account the mathematical essence of the problem.  

Problems of operational and organizational control are 
extremely widespread in the field of control, both for 
traditional dynamic objects and objects, the problems of 
optimal control of which have only begun to be studied in 
recent decades. These include, first of all, large transport 
networks, production sites of industrial enterprises, territories 
and facilities subject to catastrophic natural or man-made 
impacts, etc. To these objects, we can add large territorial 
associations, large information systems and, finally, 
computational processes and computing systems [2]. 

The optimization problems and methods investigated in 
this paper are widely used in all the above-mentioned areas 
of control. However, since the principles of their construction 
have certain peculiarities, the expediency of using 
operational and organizational control systems must be 
determined by comparison based on technical, operational 
and economic indicators with control systems of other types, 
such as systems based on the traditional principles of the 
automatic control theory [3]. At the same time, there is a 
fairly wide class of control objects in virtually all spheres of 
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practical applications, where operational and organizational 
control systems are, apparently, the only means of achieving 
the set goal of control. 

II. ORMULATION OF THE OPERATIONAL AND 
ORGANIZATIONAL CONTROL PROBLEM 

Let us consider a control object characterized at each time 
instant 𝑡𝑡 by a vector of state (output) parameters 𝑥⃗𝑥 (𝑡𝑡) (this 
vector is also often called a phase vector), a vector of control 
variables 𝑢𝑢�⃗  (𝑡𝑡), a vector of disturbances 𝑡𝑡, and a vector of 
observable variables 𝑦⃗𝑦(𝑡𝑡). The latter are those generalized 
coordinates of the control object, information about the 
change of which is sent to the control system [4]. If the state 
parameters 𝑥𝑥𝑗𝑗  can be changed directly, then 𝑥𝑥𝑗𝑗 = 𝑦𝑦𝑗𝑗 . 
Further, for simplicity, we assume that this condition is 
satisfied for all 𝑗𝑗 and 𝑥⃗𝑥 (𝑡𝑡) = 𝑦⃗𝑦 (𝑡𝑡). 

The relationship between the vectors 𝑥⃗𝑥 (𝑡𝑡),𝑢𝑢�⃗  (𝑡𝑡), 𝜉𝜉 ��⃗  (𝑡𝑡)  
is given by the constraint equations 

𝑥⃗𝑥 (𝑡𝑡) = 𝑋𝑋 �𝑥⃗𝑥 (𝑡𝑡),𝑢𝑢�⃗  (𝑡𝑡0, 𝑡𝑡), 𝜉𝜉 ��⃗  (𝑡𝑡0, 𝑡𝑡)�,               (1) 

where 𝑡𝑡0 is the initial time instant. 

If the object can be characterized by differential 
equations, then instead of (1) we can write equations in the 
normal Cauchy form 

𝑥̇⃗𝑥 (𝑡𝑡) = 𝑓𝑓 �𝑥⃗𝑥 (𝑡𝑡),𝑢𝑢�⃗  (𝑡𝑡), 𝜉𝜉 (𝑡𝑡), 𝑡𝑡�.                    (2) 

To find 𝑥⃗𝑥 (𝑡𝑡)  from the known 𝑢𝑢�⃗  (𝑡𝑡) and 𝜉𝜉 (𝑡𝑡) on the time 
interval [𝑡𝑡0,𝑇𝑇] , it is necessary to know the boundary 
conditions at its left end, i.e., 𝑥⃗𝑥 (𝑡𝑡0), or at the right end, i.e., 
𝑥⃗𝑥 (𝑇𝑇). In this case, the solution of equations (2) is called the 
solution of the Cauchy problem. In the case when it is 
necessary to transfer the object from the initial state 𝑥⃗𝑥 (𝑡𝑡0) to 
the final state 𝑥⃗𝑥 (𝑇𝑇), i.e., both 𝑥⃗𝑥 (𝑡𝑡0) and 𝑥⃗𝑥 (𝑇𝑇) are given, we 
say that the so-called two-point boundary value problem (or 
simply a boundary value problem) needs to be solved. The 
solution of the latter is much more challenging than the 
solution of the Cauchy problem. 

Most practically important control problems include 
phase constraints (or constraints along the trajectory) 

𝑥⃗𝑥 (𝑡𝑡) ∈  𝐸𝐸𝑥𝑥                                     (3) 

and control constraints  

𝑢𝑢�⃗  (𝑡𝑡)  ∈  𝐸𝐸𝑢𝑢 ,                                   (4) 

where 𝐸𝐸𝑥𝑥 and 𝐸𝐸𝑢𝑢 are given varifolds in linear metric spaces 
𝑅𝑅𝑛𝑛+1 and 𝑅𝑅𝑚𝑚+1, respectively (𝑛𝑛 is the dimensionality of 𝑥⃗𝑥; 
𝑚𝑚 is the dimensionality of 𝑢𝑢�⃗ ). 

The choice of the vector function 𝑢𝑢�⃗  (𝑡𝑡)  must comply with 
the requirement of the indicator of the control goal, given in 
the form of the following functional, reaching extremum: 

𝐸𝐸id∗ = 𝐸𝐸id  �𝑥⃗𝑥 (𝑡𝑡),𝑢𝑢�⃗  (𝑡𝑡), 𝜉𝜉 (𝑡𝑡)�  → 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.         (5) 

Reducing expression (5) to the extremum with constrain 
equations (1) or (2) and constraints (3), (4) in the general case 
is a difficult-to-solve problem. This is primarily due to the 
difficulties in obtaining equations (1) or (2) of the object 
presented to the control problems, as well as the difficulties 
in the practical implementation of the control law found for 
such a description of the object. Therefore, the 

implementation of the optimal control system, as a rule, is 
carried out as a result of the following two stages: 

1) primary (ideal) optimization, when a simplified 
mathematical description of the control object is used to solve 
the variational problem; the vector control function found at 
this stage will be denoted by 𝑢𝑢�⃗ id (𝑡𝑡), and the dependence 
𝑢𝑢�⃗ id (𝑡𝑡) =  𝑢𝑢�⃗ id (𝑥⃗𝑥 (𝑡𝑡), 𝑡𝑡)  will be called the ideal control 
algorithm; 

2) secondary optimization (optimization of control 
performance), which consists in finding such a realizable 
vector control function 𝑢𝑢�⃗ ∗ (𝑡𝑡) , which, firstly, in the given 
sense differs minimally from 𝑢𝑢�⃗ id (𝑡𝑡) and, secondly, takes into 
account the properties of the object to the degree of 
completeness, which is sufficient for the implementation of 
the set control goal. 

3) As a measure of the approximation of an ideal control 
algorithm to the optimal one, functionals can be used, which 
connect: 

4) extrema of the control goal achieved by the ideal and 
real control algorithm 

5) 𝑄𝑄 = 𝑄𝑄 [𝐸𝐸id∗ −  𝐸𝐸∗]; 

6) ideal and real state vector 

7) Ф = Ф [𝜀𝜀id (𝑡𝑡) =  𝑥⃗𝑥id (𝑡𝑡) −  𝑥⃗𝑥 (𝑡𝑡)]. 

8) The functional 𝑄𝑄  is called the control performance 
index, Ф − the accuracy factor, 𝜀𝜀id (𝑡𝑡)  − the error vector. 

9) The use of the functional 𝑄𝑄 in comparison with the 
functional Ф is associated with much greater difficulties, 
which is due to the need to calculate the current values 
𝐸𝐸id∗ (𝑡𝑡) −  𝐸𝐸∗ (𝑡𝑡) =  ∆𝐸𝐸 (𝑡𝑡) and the possible ambiguity of the 
inverse dependence 𝑢𝑢�⃗  (𝑡𝑡) =  𝑢𝑢�⃗  (∆𝐸𝐸 (𝑡𝑡), 𝑥⃗𝑥 (𝑡𝑡), 𝑡𝑡) . For this 
reason, the accuracy factor Ф is used in practice. The diagram 
in which the functional Ф is used to form the control law in 
an automated system is shown in Fig. 1. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 1. The flowchart of an automatic control system based 
on the formation of an error signal from the setting vector 
𝑥⃗𝑥id (𝑡𝑡) 

Object 7 is influenced by uncontrolled impacts 𝜉𝜉 (𝑡𝑡) , 
which in one form or another are taken into account by ideal 
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𝑢𝑢�⃗ 𝑖𝑖𝑖𝑖  (𝑡𝑡) 

𝑥⃗𝑥𝑖𝑖𝑖𝑖  (𝑡𝑡) 

𝑥⃗𝑥 (𝑡𝑡) 

𝜀𝜀id(𝑡𝑡) 

𝑥⃗𝑥∗ (𝑡𝑡) 

𝜀𝜀 (𝑡𝑡) 𝑥⃗𝑥 (𝑡𝑡) 
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model 2 formed on the basis of a simplified mathematical 
description of the object in form (1) or (2). Computer of ideal 
mode 1 solves the variational problem, the result of which 
results is ⃗𝑢𝑢�⃗ id (𝑡𝑡)  and 𝑥⃗𝑥id (𝑡𝑡) . Comparison of 𝑥⃗𝑥id (𝑡𝑡) and 
𝑥⃗𝑥 (𝑡𝑡)  by device 3 allows us to determine 𝜀𝜀id (𝑡𝑡), after which 
control accuracy optimizer 4 minimizes the functional Ф and 
calculates the optimal value of the state vector 𝑥⃗𝑥∗ (𝑡𝑡) . 
Comparator 5 calculates the difference 𝑥⃗𝑥∗ (𝑡𝑡) −  𝑥⃗𝑥 (𝑡𝑡), which 
generates an error signal in a closed control circuit, which 
includes control object 7 and power amplifier 6, which is 
usually necessary to implement control. 

As a rule, a functional of the following form is chosen as 
the accuracy factor Ф: 

Ф =  ∫ 𝜑𝜑𝑇𝑇𝑦𝑦
0 {𝜀𝜀id (𝑡𝑡)} 𝑑𝑑𝑑𝑑,                         (6) 

where 𝜑𝜑  is some continuous function of the arguments 
𝜀𝜀id1  (𝑡𝑡), 𝜀𝜀id2  (𝑡𝑡), … , 𝜀𝜀id𝑛𝑛  (𝑡𝑡);  𝑇𝑇𝑦𝑦  is the moment of the end of 
object control. 

In cases where the measure of the total deviation of the 
actual state vector 𝑥⃗𝑥 (𝑡𝑡) from the ideal over a sufficiently 
large time interval is of interest, the integration limits in (6) 
are replaced with the boundary values of the interval 
[−∞ ÷ +∞]. Sometimes, instead of (6), an estimate is used 
not on the interval [0,𝑇𝑇], but only at a certain instant 𝑡𝑡 = 𝑇𝑇, 
i.e., 

Ф = 𝜑𝜑 [𝜀𝜀id (𝑇𝑇)].                                (7) 

Obviously, it may turn out to be useful not to use 
functional (6) or a single estimate (7) as a control accuracy 
factor, but a set of estimates carried out at discrete instants 𝑡𝑡𝑘𝑘, 
which must be selected taking into account the specifics of 
the object and the set control goal. 

Suppose the control object characterized by equations (1) 
must operate on the time interval �𝑡𝑡0,𝑇𝑇𝑦𝑦�, and �𝑇𝑇𝑦𝑦 −  𝑡𝑡0�  ≤
 ∞ . At the instant 𝑡𝑡0 , 𝑥⃗𝑥 (𝑡𝑡0). is known. Let us choose the 
interval [𝑡𝑡0,𝑇𝑇] , assuming (𝑇𝑇 −  𝑡𝑡0)  ≪  �𝑇𝑇𝑦𝑦 −  𝑡𝑡0� , and for 
this interval on an accelerated time scale, using the predictive 
ideal model, we determine the ideal vector functions of state 
and control 𝑥⃗𝑥id (𝑡𝑡)  and 𝑢𝑢�⃗ id (𝑡𝑡) . Since 𝑢𝑢�⃗ id (𝑡𝑡) , which is a 
solution to the variational problem (1), (3)-(5), is usually 
unrealizable, we find the optimal control vector 𝑢𝑢�⃗ ∗ (𝑡𝑡) for 
𝑡𝑡 ∈  [𝑡𝑡0, 𝑡𝑡0 + 𝑇𝑇]. For this purpose, the accuracy factor is also 
minimized on an accelerated time scale: 

𝐸𝐸 =  � 𝐹𝐹 {𝑥⃗𝑥id (𝑡𝑡), 𝑥⃗𝑥(𝑡𝑡), 𝑥⃗𝑥(𝑡𝑡0),𝑢𝑢�⃗ (𝑡𝑡)} 𝑑𝑑𝑑𝑑

𝑡𝑡0+𝑇𝑇

𝑡𝑡0

 

Under connection constraints, control constraints and 
phase constraints of the type (1), (3) and (4), respectively, but 
taking into account the conditions of realizability of the 
control. 

We will implement control 𝑢𝑢�⃗ ∗ (𝑡𝑡) on the interval ∆𝑡𝑡 ≪
𝑇𝑇. In this case, the control system will operate in an open loop 
up to the instant 𝑡𝑡1 =  𝑡𝑡0 + ∆𝑡𝑡 . At the instant 𝑡𝑡1 , it is 
necessary to estimate the actual state of the object 𝑥⃗𝑥 (𝑡𝑡1) and 
calculate 𝑥⃗𝑥𝑖𝑖𝑖𝑖  (𝑡𝑡) and 𝑢𝑢�⃗ id (𝑡𝑡) for the interval [𝑡𝑡1, 𝑡𝑡1 + 𝑇𝑇]  and 
the initial state 𝑥⃗𝑥𝑖𝑖𝑖𝑖  (𝑡𝑡1) =  𝑥⃗𝑥 (𝑡𝑡1)  again on an accelerated 
time scale. Next, it is necessary to develop an optimal control 
𝑢𝑢�⃗ ∗ (𝑡𝑡) and implement it on the object during the time interval 
[𝑡𝑡1, 𝑡𝑡1 + ∆𝑡𝑡] . Upon its expiration, i.e., at the instant 𝑡𝑡2 =
 𝑡𝑡1 + ∆𝑡𝑡 , 𝑥⃗𝑥 (𝑡𝑡0)  is re-estimated, 𝑥⃗𝑥𝑖𝑖𝑖𝑖  (𝑡𝑡)  and 𝑢𝑢�⃗ id (𝑡𝑡)   are 

found, etc. By the instant 𝑡𝑡3 =  𝑡𝑡2 + ∆𝑡𝑡 , this procedure is 
repeated and then resumes every time at discrete instants 
𝑡𝑡𝑘𝑘 =  𝑡𝑡𝑘𝑘−1 + ∆𝑡𝑡  until the entire time interval �𝑡𝑡0,𝑇𝑇𝑦𝑦�  has 
been passed. Systems that implement this principle of 
construction will be called operational and organizational 
control systems. 

The first problem solved according to this principle was 
probably the problem of using the water of the reservoir for 
irrigation investigated by N.N. Moiseyev [5, 6]. He also 
proposed naming this principle (sometimes the word 
"approach" or "method" is used) the sliding plan principle. 
This term is especially useful when studying problems in the 
field of economics, but a special explanation of the term 
"plan" is required for many technical applications. Therefore, 
along with the traditional term, we will further use the term 
"operational and organizational control". 

Thus, the operational and organizational control system 
operating on the time interval �𝑡𝑡0,𝑇𝑇𝑦𝑦�, at the given discrete 
time instants 𝑡𝑡0, 𝑡𝑡1 =  𝑡𝑡0 + ∆𝑡𝑡, 𝑡𝑡2 =  𝑡𝑡1 + ∆𝑡𝑡, … , 𝑡𝑡𝑘𝑘 =
 𝑡𝑡𝑘𝑘−1 + ∆𝑡𝑡, … , firstly, predicts the ideal vector-function of 
state 𝑥⃗𝑥id (𝑡𝑡) and control 𝑢𝑢�⃗ id (𝑡𝑡), using the actual values of the 
state vector 𝑥⃗𝑥 (𝑡𝑡𝑘𝑘) fixed at the time instants 𝑥⃗𝑥 (𝑡𝑡𝑘𝑘) the initial 
conditions for the prediction; secondly, it predicts the optimal 
control 𝑢𝑢�⃗ ∗ (𝑡𝑡), which is the solution to the variation problem 

𝐸𝐸 =  � 𝐹𝐹 [𝑥⃗𝑥id(𝑡𝑡), 𝑥⃗𝑥 (𝑡𝑡), 𝑥⃗𝑥 (𝑡𝑡𝑘𝑘),𝑢𝑢�⃗  (𝑡𝑡)]

𝑡𝑡𝑘𝑘+𝑇𝑇

𝑡𝑡𝑘𝑘

𝑑𝑑𝑑𝑑 → 𝑚𝑚𝑚𝑚𝑚𝑚; 

𝑥⃗𝑥 (𝑡𝑡) =  𝑥⃗𝑥 �𝑥⃗𝑥 (𝑡𝑡𝑘𝑘),𝑢𝑢�⃗  (𝑡𝑡𝑘𝑘, 𝑡𝑡), 𝜉𝜉 �𝑡𝑡𝑘𝑘,𝑡𝑡��;                            (8) 

𝑥⃗𝑥 (𝑡𝑡)  ∈  𝐸𝐸𝑥𝑥; 

𝑢𝑢�⃗  (𝑡𝑡)  ∈  𝐸𝐸𝑢𝑢 . 

and, thirdly, it implements control 𝑢𝑢�⃗ ∗ (𝑡𝑡) on the object during 
the time interval [𝑡𝑡𝑘𝑘, 𝑡𝑡𝑘𝑘 + ∆𝑡𝑡]. 

The operational principle of such a system is illustrated 
by Fig. 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. The structural principle of an operational and 
organizational control system: 1 – computer of ideal mode; 2 
– predictive ideal model; 3 – computer of 𝑢𝑢�⃗ ∗ (𝑡𝑡) ; 4 – 
actuating elements; 5 – object; 6 – meter of 𝑥⃗𝑥 (𝑡𝑡𝑘𝑘) 

𝑢𝑢�⃗ id (𝑡𝑡) 

𝑥⃗𝑥id (𝑡𝑡) 

𝑥⃗𝑥 (𝑡𝑡𝑘𝑘) 

𝑢𝑢�⃗ ∗ (𝑡𝑡) 

𝜉𝜉 (𝑡𝑡) 

 

𝑥⃗𝑥 (𝑡𝑡) 
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3
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Let us call the time interval [𝑡𝑡𝑘𝑘 , 𝑡𝑡𝑘𝑘 +  𝑇𝑇], on which it is 
required to find the ideal and optimal controls, the scheduling 
interval, and the interval [𝑡𝑡𝑘𝑘, 𝑡𝑡𝑘𝑘 +  ∆𝑡𝑡]  the scheduling 
repetition interval. These intervals can vary for the same 
object. The main considerations for their selection will be 
given in the following paragraphs. 

It should be emphasized that for some types of control 
objects, there may be no need to solve the second variational 
problem with criterion (8). Indeed, if mathematical model (1) 
of the object and constraints (3) and (4) characterize the 
object sufficiently completely, then we can assume 𝑥⃗𝑥id (𝑡𝑡) =
 𝑥⃗𝑥∗ (𝑡𝑡) and 𝑢𝑢id (𝑡𝑡) =  𝑢𝑢�⃗ ∗ (𝑡𝑡). In this case, there will be no 
block 3 in the diagram shown in Fig. 2, and the input of block 
4 will be the signal 𝑢𝑢�⃗ ∗ (𝑡𝑡) =  𝑢𝑢�⃗ id (𝑡𝑡). 

It is advisable to consider some examples for a more 
visual explanation of the structural principle of an operational 
and organizational control system. 

III. PROBLEMS OF OPTIMAL SYSTEM SYNTHESIS 
AND OPTIMIZATION OF OPERATIONAL AND 

ORGANIZATIONAL CONTROL 
The design of modern optimal automatic control systems, 

as a rule, is performed in two stages: 1) calculation of the 
optimal programmed (reference or nominal) trajectory of the 
object's motion; 2) calculation of the optimal controller or the 
closed-loop system of optimal control proper, whose 
objective includes the optimal, in the given sense, 
approximation of the real motion of the object to the 
programmed trajectory [7]. This practice of division of tasks 
is a result of many years of engineering experience in the 
design of control systems. Exceptions are observed in two 
cases: when there is no need to calculate the optimal 
programmed motion, which occurs in many problems of the 
theory of automatic control, where the programmed mode is 
set unambiguously, for instance, in the form of a given engine 
speed; when the problem of designing the optimal system is 
so simple that both stages can be performed simultaneously. 
Unfortunately, the latter case is extremely rare in the practice 
of modern control system design.   

Solving a common problem in two stages is a necessary 
measure due to the difficulty, and in most cases, the 
impossibility of combining both stages. However, in some 
cases, for instance, when the optimal system is synthesized 
according to the criterion of minimum energy costs and 
energy consumption for motion along the programmed 
trajectory is much higher than the costs for keeping the object 
near the programmed trajectory, separate handling of 
problems is mathematically justified. This means that the 
obtained optimal solution will be close to that which would 
give a combined solution to the problem of selecting a 
programmed trajectory and calculating the optimal controller. 
For other, more general cases, a proof of the possibility of 
separating tasks is required. In real-life design, this proof is 
often given in the form of engineering intuition and 
experience, because a rigorous mathematical solution to the 
problem has not yet been obtained. 

The first stage of designing the optimal control system, 
i.e., the development of an optimal programmed trajectory (or 
just a program) is the simplest one. This is due to two main 
reasons. First, at this stage, we can consider simpler equations 
of the object's dynamics, which do not take into account a 
number of factors. Second, when calculating the programmed 

trajectory, it is sufficient to define the control law of the 
object as a function of time and boundary conditions (the 
initial and final state of the object). 

When calculating the optimal controller at the second 
stage, it is necessary to find the optimal control as a function 
of the state of the object. These two problems have different 
physical and mathematical content. 

In the problems of determining optimal programmed 
motion, the dynamics of an object is given by differential 
equations of the type (2) or, in a deterministic formulation, by 
the equations 

𝑥⃗𝑥 =  𝑓𝑓 (𝑥⃗𝑥,𝑢𝑢�⃗ , 𝑡𝑡),                                                    (9) 

where, as before, 𝑥⃗𝑥 is an n-dimensional state vector; 𝑢𝑢�⃗  is 
an m-dimensional control vector. 

The solution of equations (2) or (9) on the interval �𝑡𝑡0,𝑇𝑇𝑦𝑦� 
must ensure the extremum of the selected indicator of the 
control goal [denote it by 𝐸𝐸1 (𝑥⃗𝑥,𝑢𝑢�⃗ )], satisfy the boundary 
conditions at the left, at the right, or at both ends of the 
trajectory: 𝑥⃗𝑥 (𝑡𝑡0) =  𝑥⃗𝑥0, 𝑥⃗𝑥 �𝑇𝑇𝑦𝑦� =  𝑥⃗𝑥𝑟𝑟  and be subjected to 
constraints (3) and (4). 

Suppose the problem of selecting the optimal 
programmed trajectory has been solved by one of the 
methods and the vector functions 𝑢𝑢�⃗ ∗ (𝑡𝑡) and 𝑥⃗𝑥∗ (𝑡𝑡) have been 
found for 𝑡𝑡 ∈  �𝑡𝑡0, 𝑇𝑇𝑦𝑦�. Here, the problem of optimal system 
analysis is said to have been solved. However, the real motion 
of the object due to the influence of uncontrolled 
disturbances, the impossibility of absolutely accurately 
setting the object in its original initial state and absolutely 
accurately realizing the optimal programmed control 
𝑢𝑢�⃗ ∗ (𝑡𝑡)𝑢𝑢�⃗ ∗ (𝑡𝑡), etc. will differ from the programmed one. If we 
introduce the notation 

𝑧𝑧 (𝑡𝑡) =  𝑥⃗𝑥 (𝑡𝑡) −  𝑥⃗𝑥∗ (𝑡𝑡); 

𝑣⃗𝑣 (𝑡𝑡) =  𝑢𝑢�⃗  (𝑡𝑡) −  𝑢𝑢�⃗ ∗ (𝑡𝑡), 

where 𝑥⃗𝑥 (𝑡𝑡) is the trajectory of the real motion of the object 
during the control 𝑢𝑢�⃗  (𝑡𝑡) ; 𝑣⃗𝑣 (𝑡𝑡)  is an additional control, 
bringing the real motion closer to the programmed one, then 
it is possible to obtain the equations of the relative motion of 
the object during the control  

𝑧𝑧 (𝑡𝑡) =  𝑓𝑓 �𝑥⃗𝑥,𝑢𝑢�⃗  , 𝜉𝜉,��⃗  𝑡𝑡� −  𝑓𝑓 (𝑥⃗𝑥∗,𝑢𝑢�⃗ ∗, 𝑡𝑡).  

The last equation, under the assumption that the deviation 
of the real trajectory from the programmed one is small, can 
be represented as 

𝑧𝑧 (𝑡𝑡) =  𝑓𝑓 �𝑧𝑧, 𝑣⃗𝑣, 𝜉𝜉, 𝑡𝑡�                              (10) 

or, if linearization is acceptable, in the form 

𝑧𝑧 (𝑡𝑡) = 𝐴𝐴𝑧𝑧 (𝑡𝑡) + 𝐵𝐵𝑣⃗𝑣 (𝑡𝑡) + 𝜉𝜉 (𝑡𝑡),                (11)  

where A and B are matrices with constant or variable 
coefficients;  𝜉𝜉 is a disturbance vector. 

The presence of the component 𝜉𝜉 (𝑡𝑡) in equations (10) or 
(11) leads to the need to formulate complex optimal control 
problems that are associated with minimizing the 
mathematical expectation of some criterion 𝐸𝐸2 (𝑧𝑧, 𝑣⃗𝑣) and are 
currently far from the final solution. The results available in 
this area can be found in [5, 6]. In the following paragraphs, 
we will consider deterministic problems of optimal control, 
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when the components 𝜉𝜉 (𝑡𝑡) in equations (10) and (11) can be 
neglected. 

Obviously, to calculate the optimal controller that 
controls the real motion of the object, it is not enough to find 
the relationship between the control and time, i.e., 𝑣⃗𝑣 (𝑡𝑡), this 
requires determining the relationship between the control and 
the coordinates of the object and time 𝑣⃗𝑣 (𝑧𝑧, 𝑡𝑡) . This 
dependence has to be optimal, i.e., to minimize the value of 
the selected functional 𝐸𝐸2 (𝑧𝑧, 𝑣⃗𝑣) . The functionals 𝐸𝐸1 (𝑥⃗𝑥,𝑢𝑢�⃗ ) 
and 𝐸𝐸2 (𝑧𝑧, 𝑣⃗𝑣) can have both the same and different physical 
meanings. Generally speaking, when calculating the optimal 
controller, two different approaches are possible. The first 
approach is when the controller is created in such a way that 
when a misalignment occurs between the programmed and 
real trajectories, the controller must return the object to the 
programmed trajectory. For instance, for any type of the 
criterion 𝐸𝐸1 (𝑥⃗𝑥,𝑢𝑢�⃗ ), the controller can be constructed in such a 
way as to minimize the time of the object’s return to the 
programmed trajectory. In this case, the physical meaning of 
𝐸𝐸1 (𝑥⃗𝑥,𝑢𝑢�⃗ ) and 𝐸𝐸2 (𝑧𝑧, 𝑣⃗𝑣) is different. The second approach is 
based on the construction of a new programmed trajectory 
relative to the real state of the object and motion along this 
trajectory. This approach is called correction according to a 
given program. Obviously, in the second case, the criteria 
𝐸𝐸1 (𝑥⃗𝑥,𝑢𝑢�⃗ ) and 𝐸𝐸2 (𝑧𝑧, 𝑣⃗𝑣) have the same physical meaning. 

Based on the above, the formulation of the problem of 
calculating optimal correcting controls will look as follows: 
find the control 𝑣⃗𝑣∗(𝑧𝑧, 𝑡𝑡) as a function of phase coordinates 
and time minimizing the functional 𝐸𝐸2 (𝑧𝑧, 𝑣⃗𝑣) and satisfying 
equations of relative motion of the type (10) or (11). 

The solution to this problem is called optimal control 
synthesis. Since determining 𝑣⃗𝑣 (𝑧𝑧, 𝑡𝑡) in most cases presents 
serious mathematical difficulties, we have to simplify the 
problem and look for 𝑣⃗𝑣 (𝑧𝑧, 𝑡𝑡)  in some narrower class of 
admissible controls. In this case, we speak of the solution of 
the problem of possible or virtual synthesis [5, 6]. However, 
knowing the optimal controls 𝑣⃗𝑣 (𝑧𝑧, 𝑡𝑡)  turns out to be 
insufficient for the design of an optimal control system. To 
do this, it is necessary to implement a controller that provides 
feedback, which in mathematical terms comes down to 
determining the operator W, which (e.g., in the linear case) 
has the form 

𝑊𝑊 =  𝑎𝑎𝑘𝑘
𝑑𝑑𝑘𝑘

𝑑𝑑𝑑𝑑𝑘𝑘
 +  ⋯+ 𝑎𝑎1

𝑑𝑑
𝑑𝑑𝑑𝑑

+  𝑎𝑎0 

and links the variables v and z: 𝑣𝑣 = 𝑊𝑊𝑊𝑊. Such a problem is 
called optimal system synthesis. Its solution is a much more 
complicated problem than finding the optimal controls 
𝑣⃗𝑣 (𝑧𝑧, 𝑡𝑡). . Formally, in the general case, it is reduced to 
nonlinear programming problems in function spaces. With 
the introduction of simplifications, e.g., when approximating 
W by finite-dimensional functions, it turns out to be possible 
to proceed to simpler problems - the problem of nonlinear 
programming in a finite-dimensional space or to the problem 
of optimal control synthesis [5, 6, 8]. 

There is another noteworthy fact. Suppose that equations 
(2) describe the dynamics of the object sufficiently 
completely. Then the solution to the synthesis problem will 
consist in finding a control 𝑢𝑢�⃗ ∗ (𝑥⃗𝑥, 𝑡𝑡) depending on the phase 
coordinates and time such that turns the criterion  𝐸𝐸1 (𝑥⃗𝑥,𝑢𝑢�⃗ ) 
into an extremum, satisfies constraint equations (2), the 
boundary condition at the right end and constraints (3), (4). 

If, in the problems of optimal system synthesis, we 
compare the principle of correction according to the final 
state with the principle of constructing systems of operational 
and organizational control, it is easy to find an analogy. 
Indeed, determining the optimal control 𝑢𝑢�⃗ ∗ (𝑡𝑡) on the interval 
�𝑡𝑡0,𝑇𝑇𝑦𝑦�  with the help of operational and organizational 
control systems and realizing it during the time ∆𝑡𝑡, we obtain 
the state 𝑥⃗𝑥 (𝑡𝑡0 +  ∆𝑡𝑡) different from 𝑥⃗𝑥∗ (𝑡𝑡0 + ∆𝑡𝑡). Next, an 
optimal control is generated with respect to the state 
 𝑥⃗𝑥 (𝑡𝑡0 + ∆𝑡𝑡) on the planning interval �𝑡𝑡0 +  ∆𝑡𝑡, 𝑇𝑇𝑦𝑦�, at the 
time instant 𝑡𝑡0 + 2∆𝑡𝑡, a control is generated with respect to 
𝑥⃗𝑥 (𝑡𝑡0 +  2∆𝑡𝑡) on the interval �𝑡𝑡0 +  2∆𝑡𝑡, 𝑇𝑇𝑦𝑦�, etc., up to the 
end time instant. 

Two important conclusions can be drawn from a 
comparison of problems of optimal system synthesis and 
problems of operational and organizational control. 

The implementation of the system of operational and 
organizational control does not require solving the problem 
of optimal control synthesis. The approximation of the real 
motion of the object to the optimal one is achieved by 
repeatedly solving the problem of developing optimal 
programs (analysis problems). 

The use of operational and organizational control 
systems, just like the end-state correction systems, in a 
number of practically important cases can give significant 
technical or economic advantages in comparison with 
systems in which correction according to the given program 
is used [5, 6]. Let us illustrate this with the following 
example. Let it be required to solve the problem of ensuring 
the maximum range of the rocket with a given fuel supply. 
Considering the rocket as a material point, we can find the 
optimal trajectory of its motion. Due to a number of 
conditions mentioned earlier, the real motion will differ from 
the optimal one. Let us assume that as a result of the action 
of factors of a random nature, it turned out to be possible to 
achieve a greater range than expected. These circumstances 
should be used to the maximum, without worrying about the 
real trajectory having to be close to the optimal one. 
Obviously, when correcting according to the given program, 
it is impossible to use these circumstances.  

IV. OPERATIONAL AND ORGANIZATIONAL CONTROL SYSTEMS 
OPERATING ON THE PRINCIPLE OF APPROXIMATION TO A 

GIVEN PROGRAM 
Control systems based on the principle of correction 

according to a given program can have certain advantages 
over systems with end-state correction, which is mainly 
ensured by a simpler implementation of such systems. If the 
object under consideration indeed has such advantages, it is 
advisable to use them. We will show how this can be done 
when building a operational and organizational control 
system. Let us consider the problem in a deterministic 
formulation. 

Let the dynamics of the object be characterized by 
equations of the type (2), but in the absence of the 
components 𝜉𝜉(𝑡𝑡); boundary conditions at the right and left 
ends, constraints (3), (4) and criterion 𝐸𝐸1 (𝑥⃗𝑥,𝑢𝑢�⃗ ) are given. 
Thus, we need to find a solution to the following problem: 

𝐸𝐸1 (𝑥⃗𝑥,𝑢𝑢�⃗ )  → 𝑚𝑚𝑚𝑚𝑚𝑚; 

𝑥⃗𝑥 =  𝑓𝑓 (𝑥⃗𝑥,𝑢𝑢�⃗ , 𝑡𝑡); 
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                               𝑥⃗𝑥 (𝑡𝑡0) =  𝑥⃗𝑥0;                                   (12) 

𝑥⃗𝑥 �𝑇𝑇𝑦𝑦� =  𝑥⃗𝑥𝑇𝑇; 

𝑥⃗𝑥 (𝑡𝑡) ∈  𝐸𝐸𝑥𝑥; 

𝑢𝑢�⃗  (𝑡𝑡) ∈  𝐸𝐸𝑢𝑢 . 

Let us denote, as before, the optimal control found as a 
result of solving problem (12) by 𝑢𝑢�⃗ ∗ (𝑡𝑡),, and the optimal 
trajectory by 𝑥⃗𝑥∗ (𝑡𝑡). The found vector functions 𝑢𝑢�⃗ ∗ (𝑡𝑡) and 
𝑥⃗𝑥∗ (𝑡𝑡) are obtained for the initial condition 𝑥⃗𝑥 (𝑡𝑡) =  𝑥⃗𝑥0. Let 
us expand the region of possible initial states and solve 
problem (12) for each state in this region. As a result, a set of 
optimal trajectories will be obtained. We find in this set the 
trajectory that corresponds to the smallest value of the 
criterion 𝐸𝐸1 (𝑥⃗𝑥,𝑢𝑢�⃗ ) and call it ideal. In Fig. 3 for the set of 
initial states bounded by the segment AB, the optimal and 
ideal trajectories are denoted by 𝑥𝑥∗ (𝑡𝑡)  and 𝑥𝑥∗∗ (𝑡𝑡), 
respectively. 

 
 
 
 
 

 
 
 
 
  
 
 
 
 

Fig. 3. Optimal 𝑥𝑥∗ (𝑡𝑡) and ideal 𝑥𝑥∗∗ (𝑡𝑡) trajectories  

When implementing the operational and organizational 
control system, as a result of the action of the control 𝑢𝑢∗(𝑡𝑡), 
the object will go from the state 𝑥𝑥 (𝑡𝑡0)  to the state 
𝑥𝑥 (𝑡𝑡0 +  ∆𝑡𝑡)  after the time interval [𝑡𝑡0, 𝑡𝑡0 + ∆𝑡𝑡] . Let this 
state be characterized by the point C (see Fig. 3). The 
calculation of the optimal program relative to the obtained 
state gives the trajectory of CE transferring the object to the 
given trajectory 𝑥𝑥∗(𝑡𝑡) . If, as a result of the action of 
uncontrolled disturbances, the real state of the object is 
characterized by the point D (see Fig. 3), then the solution of 
problem (12) with respect to the new state and the time instant 
𝑡𝑡0 +  ∆𝑡𝑡 can give a trajectory that transfers the object to the 
ideal trajectory 𝑥𝑥∗∗ (𝑡𝑡) , i.e., trajectory DF. Thus, in cases 
where the optimal and ideal programmed trajectories do not 
coincide, the operational and organizational control system 
can develop trajectories that approximate either optimal or 
ideal. An alignment of trajectories for some initial states 
𝑥𝑥 (𝑡𝑡0 + 𝑘𝑘∆𝑡𝑡) can occur at the point 𝑥𝑥𝑇𝑇 .  Let us consider a 
simple example to illustrate this. 

We have the following problem: 

𝐸𝐸 (𝑥𝑥,𝑢𝑢) =  �(𝑥𝑥2 + 𝑢𝑢2)𝑑𝑑𝑑𝑑 +  𝜆𝜆 
𝑇𝑇

0

[𝑥𝑥 (𝑇𝑇) −  𝛽𝛽]2 → 𝑚𝑚𝑚𝑚𝑛𝑛; 

𝑥̇𝑥 = 𝑢𝑢; 

𝑢𝑢 ∈  𝐸𝐸𝑢𝑢 =  [𝑢𝑢 ∶  −2,−1, 0, 1, 2];              (13) 

𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚  ≤ 𝑥𝑥 (𝑡𝑡) ≤  𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 ; 

0 ≤ 𝑥𝑥(𝑡𝑡) ≤ 𝛽𝛽. 

For the parameters 𝑇𝑇 = 10;  𝜆𝜆 = 2,5;  𝛽𝛽 = 2; 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 =
0; 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 = 8 and a quantization step in time and in 𝑥𝑥 equal to 
1, using the computational procedure of dynamic 
programming a set of optimal solutions for 0 ≤ 𝑥𝑥 (𝑡𝑡0)  ≤ 8 
was obtained.  

Thus, approaching problems of synthesis of optimal 
trajectories from the standpoint of operational and 
organizational control led to the finding a new method of 
correction — correction according to an ideal program. For 
further constructions, let us clarify the concept of correction. 
By correction we mean the development of control actions 
that return the object from a deviated trajectory to the given 
state, to a programmed or ideal trajectory so that the 
extremum of the required functional is provided. In a special 
case, such a correction will correspond to a correction that 
gives the fastest possible return to the reference or ideal 
trajectory. 

Let us now formulate two statements on the basis of 
which optimization algorithms can be constructed in 
operational and organizational control systems.     

Statement 1. In the set of possible states of the system in 
the vicinity of the reference trajectory, there may exist those 
for which correction according to an ideal program is more 
effective in the sense of the sought-for functional than 
correction according to a given program. 

Statement 2. The choice between the two said correction 
methods can be made by dividing the set of possible states 
into two classes 𝑀𝑀 (𝑥𝑥∗) and 𝑀𝑀 (𝑥𝑥∗∗), the former of which 
indicates the preference for correction according to a given 
program over correction according to an ideal program, the 
latter indicating the opposite. 

This division is called zoning. For the considered scalar 
problem, it can be performed in the simplest way as follows: 

𝑀𝑀 (𝑥𝑥∗) =  [𝑥𝑥 ∶  𝜌𝜌 (𝑥𝑥, 𝑥𝑥∗∗)  >  𝜌𝜌 (𝑥𝑥∗, 𝑥𝑥∗∗)]; 

𝑀𝑀 (𝑥𝑥∗∗) =  [𝑥𝑥 ∶  𝜌𝜌 (𝑥𝑥, 𝑥𝑥∗∗)  <  𝜌𝜌 (𝑥𝑥∗, 𝑥𝑥∗∗)]. 

where 𝑥𝑥 is the coordinate of the real trajectory; 𝜌𝜌 (𝑎𝑎, 𝑏𝑏) is the 
distance between 𝑎𝑎 and 𝑏𝑏.  

Obviously, there is a quite wide class of problems for 
which: 1) 𝑀𝑀 (𝑥𝑥∗)  ∪  𝑀𝑀 (𝑥𝑥∗∗) forms the entire set of possible 
states, i.e., corrections according to 𝑥𝑥∗(𝑡𝑡) and 𝑥𝑥∗∗(𝑡𝑡) solve 
the optimal synthesis problem; 2) corrections according to 
𝑥𝑥∗(𝑡𝑡) and 𝑥𝑥∗∗(𝑡𝑡) are equivalent to corrections according to 
the criterion of maximum performance.  

Statements 1 and 2 make it possible to simplify the 
algorithms for optimizing operational and organizational 
control, in which, as mentioned earlier, the end-state 
correction is used. In this case, the optimization process will 
consist in the following: 

1) determining 𝑥𝑥∗(𝑡𝑡)  and 𝑥𝑥∗∗(𝑡𝑡) , here the function 
𝑥𝑥∗∗(𝑡𝑡)  can be obtained at the stage of preliminary 
calculations; 

2) determining if concrete values of 𝑥𝑥 (𝑡𝑡) belong to the 
class 𝑀𝑀 (𝑥𝑥∗) or 𝑀𝑀 (𝑥𝑥∗∗); 

3) implementation of correction according to 𝑥𝑥∗(𝑡𝑡), 
𝑥𝑥∗∗(𝑡𝑡) or end state depending on the results of Step 1. 
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With an appropriate choice of the optimization method, 
the calculation of 𝑥𝑥∗(𝑡𝑡), 𝑥𝑥∗∗(𝑡𝑡) and correcting controls can 
be carried out using one algorithm. 

V. PROBABILISTIC AND DETERMINISTIC 
APPROACH TO THE PROBLEM OF OPERATIONAL 

AND ORGANIZATIONAL CONTROL 
The purpose of building control systems that have the 

structure and principle of operation of operational and 
organizational control systems is not only to overcome the 
difficulties associated with solving synthesis problems, but 
also the difficulties caused by the need to take into account 
random disturbances acting on the control object (difficulties 
of stochastic synthesis). There are significant possibilities for 
simplifying the calculation methods in the very principle of 
constructing such systems, which is associated with the 
periodic correction of previously developed control actions 
based on taking into account the actual state of the controlled 
process. Indeed, in those cases when the influence of random 
factors on the planning repetition interval turned out to be 
such that the actual state slightly differs from the calculated 
one, the development of correcting controls can be carried out 
based on the deterministic models of the object. Thus, for 
objects of this type, random disturbances can only be taken 
into account by correcting control actions at appropriately 
selected time intervals. Consequently, the choice of the 
planning repetition interval will determine the accuracy 
provided by the operational and organizational control 
system. The smaller this interval, the greater the accuracy, but 
the higher the requirements for the computing capacity of the 
control system [9].   

When using probabilistic methods, the optimal solution 
should be developed taking into account the statistical 
characteristics of the vector of random disturbances. A more 
complete account of the properties of the object will allow the 
correction to be carried out less frequently, i.e., to increase 
the planning repetition interval with the same accuracy of the 
control system. But at the same time, the difficulties in 
implementing probabilistic methods will increase very 
significantly. Obviously, when choosing one of the two 
alternatives - using a deterministic or probabilistic approach 
in the task of constructing an operational and organizational 
control system - it is necessary to take into account the 
ensured accuracy of the solution, the value of the planning 
repetition interval and the difficulty of implementing the 
method by the computational means of the system. Usually, 
these difficulties are crucial, since in the deterministic 
formulation the solution to the problem of developing optimal 
controls (programs) is much simpler than in the probabilistic 
formulation.  

It should be emphasized that the use of a deterministic 
approach, on which all further presentation of the material 
will be focused, does not at all mean a complete neglect of 
random disturbances acting on the control object in the 
process of calculating optimal controls. These disturbances 
are taken into account when constructing the model of the 
control object. The easiest way to do this is: 1) when 
constructing models in which the vector of the object's state 
is characterized by its mean values or mathematical 
expectation; 2) when constructing models with predicted 
values of the components of the state vector.  

In the first case, when developing models, the moving 
average method can be effectively used [1], in the second 
case, predictive devices of various kinds (see, e.g., [3]). 

In the process of analyzing the control object, it can be 
found that the level and nature of the action of random 
disturbances is such that neither an increase in the frequency 
of correction of control actions, nor the improvement of 
predictive devices can ensure the specified accuracy of the 
implementation of operational and organizational control 
systems. In these cases, the use of a deterministic approach is 
hardly justified. It is necessary to study the possibilities of 
probabilistic methods and other principles of building a 
control system. 

Comparison of the results of stochastic synthesis with the 
results of operational and organizational control, which is an 
issue of natural interest, is currently not fully resolved. 
However, in [8], a theoretical analysis of the results of 
stochastic synthesis, piecewise-deterministic synthesis (at 
discrete instants in time, the disturbance prediction is carried 
out and the problem of deterministic synthesis is solved) and 
piecewise-programmed (operational and organizational) 
control for linear dynamic systems optimized by the quadratic 
functional. It is shown that in those cases when the 
disturbance predication is continuously corrected, i.e., the 
interval ∆𝑡𝑡 is close to zero, the results of all the above control 
methods coincide both for the disturbance in the form of 
white noise and for the filtered white noise. In addition, the 
results of stochastic and piecewise deterministic synthesis 
coincide for any values of the planning repetition interval for 
disturbances in the form of white noise. For filtered white 
noise and prediction of disturbances at the instants 𝑡𝑡0 + 𝑘𝑘∆𝑡𝑡 
the difference between the value of the functional for 
operational and organizational control and stochastic 
synthesis is non-negative and has the order  ∆𝑡𝑡. Recall that 
here, in both cases, the functionals have the meaning of the 
mathematical expectation of the criterion used.   

VI. OPTIMIZATION METHODS USED IN 
OPERATIONAL AND ORGANIZATIONAL CONTROL 

SYSTEMS AND THE REQUIREMENTS FOR THEM 
Along with the term "operational and organizational 

control", the terms "operational control" and "organizational 
control" are widely used. In the latter case, we mean the 
control of the so-called organizational systems, i.e., systems 
that include objects of physical nature and teams of people. 
Systems of this type are also called large systems. The main 
definitions and problems standing in the way of managing 
large systems are outlined in [10]. It is important to 
emphasize here that the above principle of building control 
systems is widely used in building organizational systems. 
Examples include almost all problems associated with 
planning and taking action to carry out the plan. 

In the term "operational and organizational control" the 
second word means not only the applicability of the principle 
of building such systems to the problems of managing 
organizational systems, but also control objects having 
certain specific features. These features are mathematically 
characterized by the presence of various kinds of logical 
conditions that must be taken into account in the control 
process. The presence of conditions of this type introduces 
additional features into the apparatus of mathematical 
programming methods used to solve the formulated problem 
of developing optimal controls. Sometimes these features are 
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such that a standard, well-developed optimization method 
cannot be used, but sometimes they greatly facilitate the 
computation process. 

The term "operational control" covers systems that have 
the same construction principle as operational and 
organizational control systems, however, the presence of 
specific features of a logical type is not reflected in the 
mathematical models of the object. Therefore, both these 
terms, if we do not emphasize the presence of logical 
conditions, can be considered synonymous. 

The form of mathematical description of objects, for the 
control of which it is advisable to use operational and 
organizational control systems, may vary, but the presence of 
phase constraints (3) and control constraints (4), as well as 
conditions of a logical type, is an integral characteristic 
feature of such objects. This feature imposes certain 
requirements on the optimization methods used. Let us list 
the main requirements for optimization methods. 

If the control object is described by differential equations, 
it is often necessary to solve a two-point boundary value 
problem. The only method that allows solving two-point 
boundary value problems without special laborious tricks is a 
computational procedure of dynamic programming. 

Computational procedures of dynamic programming, as 
will be seen from the subsequent presentation, without 
significant modifications allow implementing both the 
deterministic and the probabilistic approach in operational 
and organizational control systems. 

So, at present, considerable attention is paid to the 
development of methods for optimal control of dynamic 
systems under constraints on control of the integral form 

�𝜑𝜑 (𝑢𝑢�⃗ )
𝑇𝑇

𝑡𝑡0

𝑑𝑑𝑑𝑑 ≤ 𝐶𝐶. 

The use of the proposed approach for constructing a 
system and computational procedures of dynamic 
programming does not cause fundamental difficulties in 
solving this problem. 

To overcome the dimensionality problem, numerous 
techniques and methods have been proposed, many of which 
are outlined below and analyzed for both general and 
specialized problems. 

Finally, note another extremely important limitation 
imposed on optimization methods by the specifics of their use 
for operational and organizational control systems - an 
extremely limited resource of time allocated for the 
calculation of optimal controls. More on this in the next 
section. 

VII. TIME FACTOR IN OPERATIONAL AND 
ORGANIZATIONAL CONTROL SYSTEMS 

The principle of operation of operational and 
organizational control systems is based on a periodic 
assessment of the actual state of the object, the development 
of optimal control actions based on this assessment and their 
implementation in the object until the next assessment of the 
state. Naturally, the problem of selection of the optimal 
controls should be solved during such a time interval 𝜏𝜏𝑝𝑝  <
 ∆𝑡𝑡, after which the meaning of the implementation of the 

obtained control still does not disappear, and it is natural that 
the interval 𝜏𝜏𝑝𝑝 should be sufficiently small. 

In this case, is chosen the following procedure of the 
system operation. At each time instant �𝑡𝑡𝑘𝑘 −  𝜏𝜏𝑝𝑝�, the actual 
state 𝑥⃗𝑥�𝑡𝑡𝑘𝑘 −  𝜏𝜏𝑝𝑝�  is estimated and the state 𝑥⃗𝑥(𝑡𝑡𝑘𝑘)  is 
predicted. Knowing 𝑥⃗𝑥(𝑡𝑡𝑘𝑘), the optimal values of the control 
actions 𝑢𝑢�⃗ ∗ (𝑡𝑡)  are calculated. The calculation should be 
completed by the instant 𝑡𝑡𝑘𝑘. Starting from this time instant, 
the developed control is implemented up to the time instant 
𝑡𝑡𝑘𝑘+1 =  𝑡𝑡𝑘𝑘 + ∆𝑡𝑡. 

If it is possible to predict 𝑥⃗𝑥(𝑡𝑡𝑘𝑘) accurately enough, the 
interval 𝜏𝜏𝑝𝑝 can be taken large enough but still not exceeding 
the planning repetition interval ∆𝑡𝑡. 

If for some reason it is not possible to carry out a 
qualitative prediction, the operation of the operational and 
organizational control system should be arranged in a 
different way. In this case, it is necessary to periodically 
perform the following steps: to estimate the state vector 𝑥⃗𝑥 (𝑡𝑡) 
at time instants 𝑡𝑡𝑘𝑘 , 𝑡𝑡𝑘𝑘+1, 𝑡𝑡𝑘𝑘+2, … and select the optimal control 
𝑢𝑢�⃗ ∗ (𝑡𝑡) ; to implement the developed control 𝑢𝑢�⃗ ∗ (𝑡𝑡)  starting 
from the instant  𝑡𝑡𝑘𝑘 +  𝜏𝜏𝑝𝑝. 

Since the implementation of 𝑢𝑢�⃗ ∗ (𝑡𝑡)  starts not from the 
instant 𝑡𝑡𝑘𝑘, but from the instant 𝑡𝑡𝑘𝑘 +  𝜏𝜏𝑝𝑝, i.e., with the delay 
τ_p, additional errors may occur due to the fact that 𝑥⃗𝑥 (𝑡𝑡𝑘𝑘) 
differs from 𝑥⃗𝑥 (𝑡𝑡𝑘𝑘 + 𝜏𝜏𝑝𝑝). Therefore, it is necessary to strive 
to make the interval 𝜏𝜏𝑝𝑝 as small as possible. 

The problem of minimizing 𝜏𝜏𝑝𝑝  also arises for those 
operational and organizational control systems where the 
planning repetition intervals ∆𝑡𝑡 are not constant and can even 
be random variables, and the state of the object during this 
time can change significantly. 

Thus, the time factor when choosing an optimization 
method for operational and organizational control systems is 
very important and sometimes crucial. To obtain a solution in 
a timely manner, it is often necessary to completely abandon 
the choice of optimal controls and use approximate 
optimization methods, i.e., methods that give a suboptimal, 
but sufficiently close to optimal solution.  

REFERENCES 
[1] A.B. Sadigov, Models and technologies for solving problems of 

management in emergency situations. Baku, "Elm", 2017, 372 p. (in 
Russian)  

[2] William S. Levine. Control System Applications. ISBN 
9780367399061, Published  by CRC Press, 2019, 360 p. 

[3] A.B. Sadigov, R.M.  Zeynalov, Optimal control in the problems of 
calculating the benefit/cost ratio in emergency response. Informatics 
and Control Problems, vol. 40, issue 1, 2020, pp. 47-56 

[4] K. Aida-zade, J. Asadova, N. Suleymanov, Numerıcal Analysıs of 
Methods of Solvıng Optımal Control Problems wıth Non-Fıxed Tıme 
Proseedigs of the 2nd Int. Conf. “Problems of Cybernetics and 
Informatics” September 10-12, 2008, Baku, Azerbaijan. Section 5, 
“Control and Optimization”, pp. 94-97. 

[5] N.N. Moiseev, Numerical methods in the theory of optimal systems. 
Moscow, Nauka, 1971, 424 p. (in Russian) 

[6] N.N. Moiseev, Elements of the theory of optimal systems. Moscow, 
Nauka, 1975, 526 p. (in Russian) 

[7] T. Sprocka, C. Bocka, F. McGinnis, Survey and Classification of 
Operational Control Problems in Discrete Event Logistics 
Systems(DELS). International Journal Prod Res. 2018:  
doi:10.1080/00207543.2018.1553314 

https://www.routledge.com/search?author=William%20S.%20Levine


               225               Baku, Azerbaijan 

[8] Weihai Zhang, Honglei Xu, Huanqing Wang, Zhongwei Lin, 
Stochastic Systems and Control: Theory and Applications. 
Mathematical Problems in Engineering, Volume 2017, Article ID 
4063015, 4 p. 

[9] V. Menshikh, A. Samorokovskiy, O. Avsentev, Models of resource 
allocation optimization when solving the control problems in 
organizational systems. Journal of Physics: Conf. Series 973, 2018, 
012040  

[10] P. Riedinger, I.-C. Morarescu, A numerical framework for optimal 
control of switched affine systems with state constraint. Proceedings of 
the 4th IFAC Conference on Analysis and Design of Hybrid Systems 
(ADHS 12) June 6-8, 2012. Eindhoven, The Netherlands. pp. 141-146. 


	0-00a
	0-00b
	0-00c
	0-00d
	0-01
	0-02
	1-00
	1-01
	I. Introduction
	II. Problem statement
	III. Main Components of Creating a Railroad Operation Safety System in Seismically Active Regions
	IV. The Structural Principle of a Seismic Acoustic Noise Monitoring Station
	V. Correlation technology for Noise control of the beginning and dynamics of development of the latent period of accidents in rail transport
	VI. Conclusion
	References


	1-02
	I. Introduction
	II. Fatigue failure of the axles of railway wheelsets
	III. MAXIMUM PERMISSIBLE STRESSES OF AXLES
	IV. Probable causes of fatigue cracking of railway axles
	V. EXAMPLES OF FATIGUE CRACKING                        OF RAILWAY AXLES
	VI. CONCLUSIONS
	References


	1-03
	1-04
	1-05
	I. Introduction
	II. Start-up stages of a diesel engine
	III. Analysis of the duration of individual stages of the diesel engine start-up
	IV. Conclusions
	References


	1-06
	I. Introduction
	II. Procedures for interception of civil aircraft by military aircraft in VMC (Visual Meteorological Conditions)
	III. Intercept without visibility (IMC - IFR Meteorological Conditions)
	IV. Other methods of influencing the flight course of a commercial aircraft
	V. Cases of forcing a commercial airplane to land by military aircraft in the 20th century
	VI. Ryanair flight on May 23, 2021
	VII. Is it possible to legally shoot down a civil plane?
	Summary
	References


	1-07
	I. Introduction
	A. Useful Software
	B. Machine Learning Models
	C. Metrics

	II. Demand prediction
	A. Bilateral Relation Demand Transport Poland and other countries
	B. Data Preparing
	C. Training and Testing
	D. Validation

	III. implementation
	IV. Conclusions
	References


	1-08
	References

	1-09
	Conclusion
	References

	1-10
	1-11
	I. Introduction
	II. Middle Corridor
	Conclusion
	References


	1-12
	1-13
	I. Introduction
	II. Technologies that form the digital economy
	A. Selecting a Template (Heading 2)

	III. How does digital economy differ from traditional economy, and what are its advantages?
	A) The digital economy increases efficiency
	B)  Ensures the access to new markets
	C)  Social aspects of the digitalization

	IV. The role of a state in the development of digital economy
	V.  Development of digital economy in Azerbaijan and future prospects
	D)  The level of economy digitalization in Azerbaijan
	E)  Reforms in the field of digital development of Azerbaijan’s economy
	F) The position of a country in international digital assessment rankings
	G) Development prospects for the digital economy
	Conclusion
	References



	1-14
	I. Introduction
	II. Problem statement
	III. Possibility of Control of the Beginning of the Latent Period of Malfunctions Using the Position-Binary Technology
	IV. Adaptive Technology for Determining the Sampling Interval of Vibration Signals
	V. Conclusion
	References


	1-15
	1-16
	I. Introduction
	II. Theoretical framework
	III. International experience
	IV. Methods
	A. Positive environmental impact
	B. Direct and indirect effects on human health
	C. Road density as a leverage

	V. Results
	VI. Discussion
	VII. Conclusion
	References


	1-17
	1-18
	1-19
	I. Introduction
	II. Digital Platform
	A. Physical object
	B. Virtual counterpart
	C. Connection
	D. Data
	E. Services

	III. Achivements and Future Work
	IV. Conclusions
	Acknowledgment
	References


	1-20
	I. Introduction
	II. Method
	III. Results and discussion
	IV. Results and discussion
	Based on the above, to make changes to the elevation standards based on the study of their strength and current density and to implement them in practice, the construction of saline soils in different territorial conditions of Uzbekistan, including th...
	The main factors in the formation of saline soils are mineralized groundwater and saline rocks lying close to the surface. The main condition of salinization is the impossibility of water flow in places and the fact that the evaporation process exceed...
	References


	1-21
	I. introduction
	II. Causes of Damage to Pavement
	III. How do we prevent road damage
	References


	1-22
	Introduction
	Mathematical statement of the problem
	solution of the problem
	Gravitational  force acting on the hexacopter.
	Thrust force of the rotors.
	Aerodynamic forces acting on hexacopter.

	Conclusion
	References


	1-23
	I. Introduction
	II. Core Participants of East-West Transport Corridors in GUAM Countries
	III. Collaborative Blockchain Solution for Guam Corridor Data Pipeline
	IV. Core Functional Features and Requirements for Guam Corridor Data Pipeline
	References


	2-00
	2-01
	I. Introduction
	II. Requirement
	III. Technologıes
	A. AForge
	B. Tesseract Engine
	C. OpenCV

	IV. Project
	V. Conclusion
	References


	2-02
	I. Introduction
	II. Analysis of Existing Methods for Determining Indicators of Vertical and Horizontal Dynamics of a Subway Car
	III. Development of a New Method for Measuring Vertical and Lateral Forces Acting on the Bogie Frame of a Subway Car
	IV. Testing of a New Measuring Scheme for Determining the Vertical and Lateral Forces Acting on the Bogie Frame of a Subway Car
	V. Conclusion
	References


	2-03
	References

	2-04
	References

	2-05
	I. INTRODUCTION
	II. STATEMENT OF THE PROBLEM AND SELECTION SUBSTANTIATE OF SENSORS FOR MULTI-PARAMETER PROTECTION SYSTEM
	III. MAGNETIC FIELD MEASUREMENT AND OUTPUT SIGNAL ANALYSIS
	IV. MODELING OF MULTI-PARAMETER PROTECTION SYSTEM
	V. CONCLUSION
	REFERENCES

	2-06
	I. Introduction
	II. Electronic solutions available for non-oil export in Azerbaijan
	III. Automation of information exchange in postal services.
	IV. The problem of integration into international payment systems.
	V. Results and suggestions:
	References


	2-07
	I. INTRODUCTION
	II. PROBLEM STATEMENT
	III. PROBLEM SOLUTION
	CONCLUSION


	2-08
	I. Introduction
	II. Statement of the problem
	III. Numerical solution to the problem
	IV. The results of numerical experiments
	V.  Conclusion
	References


	2-09
	I. Introduction
	II. Problem Statement
	III. Numerical Solution of the Problem
	IV. Result of Numerical Experiments
	Table 1. Optimal and obtained values of the parameters of the hydraulic resistance functions under 0%, 0.5% and 1% noise levels for test problem 1.
	Table 2. Obtained values of the ends of the subsections and of the functional under 0%, 0.5% and 1% noise levels for test problem 1.
	Table 3. Optimal and obtained values of the parameters of the hydraulic resistance functions under 0%, 0.5% and 1% noise levels for test problem 2.
	Table 4. The obtained values of the ends of the subsections and of the functional under 0%, 0.5% and 1% noise levels for test problem 2.

	V. Conclusion
	References


	2-10
	I.  Introduction
	III.  Qualimetry
	IV. Road Safety and Explanatıon of Road Parameters
	VI. WınQSB Package Program
	VII. Conclusion
	In this study, integer programming models of the planning of measures to increase road safety have been prepared. Qualimeter methods were used while preparing the models. The prepared model variables are expressed as the Knapsack Problem, which is li...
	Calculation experiments were made on the test problems with the prepared program and the LP-ILP program of the WinQSB system was compared. According to this comparison, the results found by DSKP were always the same as those found by the LP-ILP progr...
	Prepared Mathematical Model and Program System was applied on Izmir's Aliaga highway data and the results are presented in [6].
	References


	2-11
	I. Introduction
	II. Literature Review
	III. Analysis of Important Current Indicators in the Transport Sector
	IV. Environmental Impact Assessment of Cargo Transportation
	As can be seen from Figure 3, only the amount of waste emitted by the train to the environment within the selected technical parameters is low, fuel consumption is low, in this regard, it is more appropriate to deliver the selected cargo by train to t...
	With the help of Eco Transit World  software, it is very convenient to calculate the cost of transporting goods from one point to another anywhere in the world, as well as in the case of a chain route.

	V. Conclusion
	References


	2-12
	References

	2-13
	2-14
	I. Introduction
	II. ORMULATION OF THE OPERATIONAL AND ORGANIZATIONAL CONTROL PROBLEM
	IV. Operational and organizational control systems operating on the principle of approximation to a given program
	VI. OPTIMIZATION METHODS USED IN OPERATIONAL AND ORGANIZATIONAL CONTROL SYSTEMS AND THE REQUIREMENTS FOR THEM
	References


	2-15
	References

	2-16
	References

	2-17
	I. Introduction
	II. Optimality principle. Bellman equation
	a) for all possible values of ,𝑥-𝑁−1., the corresponding values of ,𝑢-𝑁−2. from the formula
	References



	2-18
	I. Introduction
	II. Analysis of the specific features of crew’s professional activity in marine transport from the perspective of human health ensuring
	III. The study of the human factor in maritime logistics and the problem statement
	IV. Problem solving
	A. Systematic monitoring of employees and identification of psychological health conditions and deviations

	Table 1. Linguistic variables of the Cattell test and their term-sets
	B. Assessment of compatibility of the ship crew members with their positions based on fuzzy patterns recognition

	V. Conclusion
	References


	2-19
	I. INTRODUCTION
	II. PURPOSE OF THE RESEARCH
	III. SOLUTION OF THE PROBLEM
	IV. CONCLUSION
	References


	2-20
	2-21
	I. Introduction
	II. Problem statement
	III. Developing algorithms for calculating the probability of admissible and critical values of the noise
	IV. Algorithms and technologies for calculating the relay cross-correlation function and the coefficient of correlation between the useful signal and the noise
	V. Technologies for monitoring the technical condition of tunnels by critical values of the noise and its correlation with the useful signal of the noisy signal
	VI. Conclusion
	Acknowledgment
	References


	2-22
	I. Introduction
	II. Formulation and proof of the main results
	III. Prepare Your Paper Before Styling
	Acknowledgment
	References


	2-23
	I. Introduction
	II. Problem statement
	III. Problem solving
	A. Application of B-spline method
	B. Image processing
	C. Thinning

	IV. CONCLUSION
	References


	3-00
	3-01
	I. INTRODUCTION
	II. PROBLEM STATEMENT
	III. PROBLEM SOLUTION
	CONCLUSION


	3-02
	CONCLUSION
	References

	3-03
	I. Introduction
	II. Experimental technique
	III. Experimental part
	IV. Conclusion
	References


	3-04
	References

	3-05
	I. Introduction
	References


	3-06
	References

	3-07
	3-08
	I. INTRODUCTION
	II. PROBLEM STATEMENT
	III. PROBLEM SOLUTION
	CONCLUSION
	References



	3-09
	I. Introduction
	II. THE MODEL OF THE DESIRED LEVEL OF GDP
	III. CONCLUSION
	References





